A highly durable switch that withstands heat

 from direct sunlight and extreme air temperature changes in outdoor applications.- Wide range of models.
\square Wide range of actuators. Select the actuator to suit your particular work requirements and operating conditions.
\square Mechanical life: 10 million operations.
- UL/CSA/GB (ccc marking) approved models.

APPLICATIONS

Automated mechanical parking garages

- Ski lifts
- Cherry pickers and other elevated work equipment
- Various other industrial machinery in harsh environments and cold places.
(Use the corrosion-proof type if switch will be splashed by strong acidic or alkaline liquids.)

ORDER GUIDE

Actuator		Operating characteristics			Basic catalog listing	Double seal catalog listing (S)
Name	Shape	Max. O.F. (operating force)	Max. P.T. (pretravel)	Min. T.T. (total travel)		
Roller lever		13.4 N	Standard switch 20°	Standard travel 50°	1LS-J800	1LS-J800S
		8.9 N	Standard switch 20°	High overtravel 80°	1LS-J820	1LS-J820S
			High sensitivity switch 10°	High overtravel 80°	-	1LS-J830S
Adjustable roller lever		8.9 N	Standard switch 20°	High overtravel 80°	1LS-J823	-
			High sensitivity switch 10°	High overtravel 80°	-	1LS-J833S
No lever	-	8.9 N	Standard switch 20°	High overtravel 80°	-	1LS-J821S

UL/CSA/GB(ccc marking) approved.

OUTDOOR USE LIMIT SWITCHES

1LS-J800 Features

(1)The lever fixing bolt is made out of SUS and is fluorine-coated to improve removability.
(2) The gap between the lever body and head has been increased to improve corrosion resistance, dust resistance and freeze resistance performance.
(3)Lever return defects have been remedied by a head structure that prevents corrosion of the housing and by the use of SUS as the shaft material.
(4) Special hardening has been performed on shaft internal moving parts to improve wear and corrosion resistance performance.
(5) The lubricant on operating mechanisms has been changed to one that can be used in a wide operating temperature range $\left(-60^{\circ} \mathrm{C}\right.$ to $\left.+160^{\circ} \mathrm{C}\right)$ to improve temperature characteristics.
(6) Special coating has been added to the head's internal plunger to maintain smooth performance.
(7)SUS has been used for all external screws as a countermeasure against defects caused by rust.
(8) Silicone rubber is used for all of the seal rubber to improve low temperature characteristics.
(9)The body and head housing have undergone special corrosion resistance treatment.

PERFORMANCE

Catalog listing		1LS-J80 \square	1LS-J82■	1LS-J83 \square
Standards	Compliance	NECA C 4508/JIS C 8201-5-1		
	Certification	UL/CSA/GB		
Structure	Contact form	2-circuit double break		
	Terminal type	M4 screw (switch terminal screw)		
	Contact type	Silver rivet		
	Protective structure	IP67 (IEC 60529, JIS C 0920)		
Electrical performance	Electrical rating	See Table 1.		
	Between nonDielectric continuous terminals	1,000 Vac, 50/60 Hz for 1 minute		
	strength Between each terminal and non-live metal part	2,000 Vac, $50 / 60 \mathrm{~Hz}$ for 1 minute		
	Insulation resistance	Min. $100 \mathrm{M} \Omega$ (by 500 Vdc megger)		
	Initial contact resistance	Silver: Max. $50 \mathrm{~m} \Omega(6$ to 8 Vdc , thermal current 1A, voltage drop method) Gold-plated: Max. $100 \mathrm{~m} \Omega(6$ to 8 Vdc , thermal current 0.1 A , voltage drop method)		
	Recommended min. contact operating voltage/current	$24 \mathrm{~V} 10 \mathrm{~mA}, 12 \mathrm{~V} 20 \mathrm{~mA}$		
Mechanical performance	Actuator strength	Withstands load 5 times O.F. (operating direction for 1 minute)		
	Terminal strength	Withstands tightening force of $1.5 \mathrm{~N} \cdot \mathrm{~m}$ for 1 minute		
	Impact resistance	Contacts open for 1 ms max . at $300 \mathrm{~m} / \mathrm{s}^{2}$ in free position and total travel position		
	Vibration resistance	1.5 mm peak-to-peak amplitude, frequency 10 to 55 Hz , for 2 continuous hours Contacts open for 1 ms max. in free position and total travel position.		
	Allowable operating speed	$1.7 \mathrm{~mm} / \mathrm{s}$ to $0.5 \mathrm{~m} / \mathrm{s}$		
	Operating frequency	Max. 60 operations/minute		
Life	Mechanical	Min. 10 million operations		
	Electrical	See Table 2.		
Ambient operating conditions	Temperature	-10 to $+70^{\circ} \mathrm{C}$ (freezing not allowed) -5 to $+70^{\circ} \mathrm{C}$ for double seal type (S type)		
	Humidity	Max. 98\% RH		
Recommended tightening torque	Body	5 to $6 \mathrm{~N} \cdot \mathrm{~m}$ (M5 hexagon socket head bolt)		
	Cover	1.3 to $1.7 \mathrm{~N} \cdot \mathrm{~m}$ (M4 screw)		
	Head	0.8 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$ (M3.5 screw)		
	Lever	4 to $5.2 \mathrm{~N} \cdot \mathrm{~m}$ (M5 hexagon socket head bolt)		
	Terminal screw	1.0 to $1.4 \mathrm{~N} \cdot \mathrm{~m}$ (M4 binding head machine screw)		

-Table 1. Electrical rating

Internal switch	Standard type		Double seal type	
Type	Catalog listing	Electrical rating	Catalog listing	Electrical rating
Standard	1LS-J80 1LS-J82	$\begin{aligned} & 125,250,480 \text { Vac } 10 \mathrm{~A} \\ & 125 \text { Vac } 1 / 2 \mathrm{HP} \\ & 250 \text { Vac } 1 \mathrm{HP} \\ & 125 \text { Vdc } 0.8 \mathrm{~A} \\ & 250 \text { Vdc } 0.4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { 1LS-J80 } \square \mathrm{S} \\ & \text { 1LS-J82 } \square \mathrm{S} \end{aligned}$	$\begin{aligned} & 125,250,480 \text { Vac } 5 \mathrm{~A} \\ & 125 \text { Vac } 1 / 8 \mathrm{HP} \\ & 250 \text { Vac 1/4HP } \\ & 125 \text { Vdc 0.8A } \\ & 250 \text { Vdc } 0.4 \mathrm{~A} \end{aligned}$
High sensitivity	1LS-J83 \square	$\begin{aligned} & 125,250,480 \text { Vac } 10 \mathrm{~A} \\ & 125 \text { Vac } 1 / 2 \mathrm{HP} \\ & 250 \text { Vac } 1 \mathrm{HP} \\ & 125 \mathrm{Vdc} 0.8 \mathrm{~A} \\ & 250 \text { Vdc } 0.4 \mathrm{~A} \end{aligned}$	1LS-J83 \square S	125, 250, 480 Vac 5A 125 Vac 1/8HP 250 Vac 1/4HP

-Table 2. Electrical life

Internal switch	Load	Life
Standard load	Rated load	Min. 500,000 operations
Standard load, double seal	Rated load	Min. 200,000 operations
Low current load	Rated load	Min. 2 million operations

※Assumes operating frequency of 20 operations/minute.

- Circuit diagram

EXTERNAL DIMENSIONS

-Basic dimensions

- Actuator mounting dimensions

Roller lever type

Adjustable roller lever type

PRECAUTIONS FOR USE

1. Protective structure

- IP67 protection does not assure complete waterproofing. Switch should not be in constant contact with water.
- Avoid use where external force is applied at all times on the connecting section of the connector.
- Do not use the body as a step or place heavy objects on top of it.

2. Ensuring a good seal

- When general-purpose limit switches are used in locations subject to splashing by water, oil, dirt and dust, or chips, water or oil sometimes enters the switch from the conduit due to capillary action. For this reason, be sure to use a sealed connector compatible with the cable.
- When the screws in the head or covers are loosened to change the operating direction of the switch, or the relationship between switch operation and the indicator lamp (lamp ON during switch standby / during switch operation), tighten the screws to the recommended tightening torque to ensure a good seal.
<Recommended tightening torque>
Cover: 1.3 to $1.7 \mathrm{~N} \cdot \mathrm{~m}$ (M4 screw)
Head: 0.8 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$ (M3.5 screw)

3. Attaching switches

- Tighten each of the parts on the limit switch according to the appropriate tightening torques listed in the performance tables. Overtightening damages screws and other parts. On the other hand, insufficient tightening of screws lowers the effectiveness of the seal and reduces various performance characteristics.
- Do not leave or use covers and conduit parts open. Water, dirt, or dust may enter, which causing malfunction.
- Prevent impact to the lever body and head. Failure to do so might deform the actuator or cause defective switch return.
- Do not use silicone rubber electrical lead insulation, silicone adhesive or grease containing silicone. Doing so might result in defective electrical conductivity.

4. Wiring

- Do not perform wiring with the power ON. Doing so might cause electric shock, or the machine may start unexpectedly, causing an accident.
- Use crimp-type terminal lugs with covered insulation for electrical leads to prevent contact with covers and housings. If a crimptype terminal lug contacts a cover, the cover may no longer shut - or a ground fault may occur.

Use sealed connectors (PA1 Series, etc. sold separately) or

- flexible tubing (PA3 Series) with IP67 or equivalent seal for conduits.
Firmly tighten covers and conduits. If covers and conduits are not sufficiently tightened, the seal will be impaired and switch performance will no longer be assured.

5. Adjusting switches

- Do not apply excessive force (5 times O.F.) to the actuator beyond the total travel position. Doing so might damage the switch.
- Keep overtravel between $1 / 3$ to $2 / 3$ of the rated value. Small overtravel might cause the contacts to rattle due to vibration and impact, or may result in defective contact.

6. Environment

- Do not use the switch in an environment where strong acid or alkali is directly splashed onto it.

