SDC45V/46V DigitroniK ${ }^{\text {TM }}$
 Digital Indicating Controller

Overview

The SDC45V/46V DigitroniK ${ }^{\text {TM }}$ is a highly advanced, highprecision compact digital indicating controller, featuring a 5-digit indicator, an input sampling cycle of 100 ms , indication accuracy of $\pm 0.1 \%^{*}$ of reading, and either 2 full multi-range analog inputs or 1 full multi-range input plus 2 DC current/voltage inputs. A dual-input computation function can be used for each input and output processing unit, allowing sensor input changeover, control based on the average of 2 PV values, control output changeover, feed-forward control, override control, etc. In addition, the input processing unit has a temperature-pressure correction function (2-input model: temperature correction or pressure correction).
Like the SDC45A/46A, the SDC45V/46V has a high visibility LED display and rich variety of inputs, outputs, and operation keys supporting its many features (inputoutput linearization, single loop/cascade/backup control modes, etc.). Easy setup and monitoring from a PC are available using the Smart Loader Package.
This controller is compliant with IEC directives, and is CEmarked.

* A representative figure. Indication accuracy differs depending on the input range type and temperature band.

Features

- Dual-input computation capability and temepraturepressure correction are built in.
- The number of analog inputs, either two (full multi) or three (1 full multi and 2 DC current/voltage), can be selected (by model number).

- Control, ranging from cascade to backup control, is available for 1 or 2 loops.
- Sampling cycle of 100 ms and accuracy of $\pm 0.1 \%$ rdg.
- Ample room for indication of vital information on dual 7 -segment, 5 -digit LED displays and an auxiliary 11-segment, 3-digit LED display
- Heat/cool control, using two control outputs
- Using the optional transmitter power supply function, a pressure transmitter can be directly connected.
- IP65 protection for the front panel
- Up to 16 recipe settings involving SP, event settings, etc., and 8 groups of fixed-value control output settings support automatic operation of equipment.
- Support for nonlinear processes using input /output broken line linear approximation tables
- Customizable parameter keys and LED
- A variety of inputs and outputs

2 inputs, 7 outputs, 14 DIs, 8 DOs, 2 CT or AT inputs, RS-485 communications

Basic function block diagram for the C45V/46V

Specifications

Analog input	Input type	2-input model	Full multi-range input: thermocouple, RTD, DC current and DC voltage
		3-input model	Input 1: thermocouple, RTD, DC current and DC voltage full multi-range inputs
			Input 21: DC current and DC voltage
			Input 22: DC current
	Input sampling time	100 ms	
	Input bias current (under standard conditions)	Thermocouple input: $-0.2 \mu \mathrm{~A}$ (upscale burnout indication) $+0.13 \mu \mathrm{~A}$ (downscale burnout indication) $\pm 0.05 \mu \mathrm{~A}$ (no burnout detection) Note: Negative current flow is from terminal B, positive is to terminal B. DC voltage input: $-0.2 \mu \mathrm{~A}$ in the $\pm 100 \mathrm{mV}$ range and lower ranges (upscale burnout indication) $+0.13 \mu \mathrm{~A}$ in the $\pm 100 \mathrm{mV}$ range and lower ranges (downscale burnout indication) $\pm 0.05 \mu \mathrm{~A}$ in the $\pm 100 \mathrm{mV}$ range and lower ranges (burnout detection) $\pm 1 \mu \mathrm{~A}$ or less in the 0 to 1 V and -1 to +1 V ranges $-5 \mu \mathrm{~A}$ or less in the 1 to 5 V and 0 to 5 V ranges $-10 \mu \mathrm{~A}$ or less in the 10 V range	
	Input impedance	Current input: 110Ω or less	
	Measuring current	RTD input: $1.0 \mathrm{~mA} \pm 2$ \%	
	Influence of wiring resistance (under standard conditions)	Thermocouple input: $0.2 \mu \mathrm{~V} / \Omega$ (upscale burnout indication) $0.13 \mu \mathrm{~V} / \Omega$ (downscale burnout indication) $0.05 \mu \mathrm{~V} / \Omega$ (no burnout detection) DC voltage input: $0.2 \mu \mathrm{~V} / \Omega$ or less in the $\pm 100 \mathrm{mV}$ range and lower ranges (upscale burnout indication) $0.13 \mu \mathrm{~V} / \Omega$ or less in the $\pm 100 \mathrm{mV}$ range and lower ranges (downscale burnout indication) $0.05 \mu \mathrm{~V} / \Omega$ in the $\pm 100 \mathrm{mV}$ range and lower ranges (burnout detection) $1 \mu \mathrm{~V} / \Omega$ or less in the 0 to 1 V and -1 to +1 V ranges $5 \mu \mathrm{~V} / \Omega$ or less in the 1 to 5 V and 0 to 5 V ranges and lower ranges $10 \mu \mathrm{~V} / \Omega$ or less in the 10 V range and lower ranges	
	RTD input allowable wiring resistance	85Ω or less (Zener barrier + wire, per wire)	
	Max. allowable input	Thermocouple input: -1.0 to +3.5 V , DC voltage input (mV range): -1.0 to +3.5 V DC , DC current input: -1 to 4 V , DC voltage input (V range): -10 to +25 V .	
	Burnout indication	Varies with input range	
	Over-range detection threshold	Varies with upper/lower limit value of PV range or input range (fixed)	
	Cold junction compensation accuracy	$\pm 0.5^{\circ} \mathrm{C}$ (under standard conditions)	
	Infl. of ambient temp. on cold junction compensation	$\pm 1.0^{\circ} \mathrm{C}$ (in the 0 to $50^{\circ} \mathrm{C}$ range under standard conditions)	
	Cold junction compensation method	Internal/external ($0^{\circ} \mathrm{C}$ only) compensation selectable	
	Scaling	-19999 to +32000U (Linear DC voltage/current input only. Reverse scaling and decimal point repositioning available. Effective resolution depends on the range.)	
Indicators and configuration	PV, SP indication	5-digit, 7-segment LED. PV: green or orange (depending on the model) upper display. SP: lower orange display.	
	Auxiliary indication	3-digit, 11-segment orange LED	
	Multi-status indicator	12 -segment LED, green or orange (depending on the model). Displays status of control output, alarm, RUN/READY, etc.	
	No. of status displays	C45V: 17, C46V: 19 LED displays	
	Operation keys	C45V: 11, C46V: 13 rubber keys	
	Number of local set points	16 groups	
	Memory storage system	EEPROM	
	Indicating range	-19999 to +32000U (or to the SP limit, if it is set)	
	SP limits	Lower limit: -19999 to upper limit value. Upper limit: lower limit value to 32000U.	
	SP ramp	0.0 to 3200.0 s, min, or h (both up- and down-ramp), Disabled if 0.0 is selected.	
	Input readout accuracy	± 0.1 \% FS ± 1 digit (depending on the range; see Table 1)	
	Indicating range	See Table 1	

Digital input (DI)	Number of inputs	C45V: 10 max. C46V: 14 max. (For models with CT input, C45V: 8 max. C46V: 12 max.)	
	Types of connectable outputs	Dry contact or open-collector (open drain, sink)	
	Open terminal voltage	$7 \mathrm{~V} C \pm \pm 15 \%$ (under standard conditions)	
	Terminal current (during short-circuit)	3 to 5 mA (optional 8 or 12 inputs under standard conditions), 3 to 7 mA (standard 2 inputs under standard conditions)	
	Allowable contact resistance (dry contact)	500Ω or less (under standard conditions)	
	Allowable open-collector ON-state residual current	1.5 V or less (under standard conditions)	
	Allowable open-collector OFF-state leakage current	$100 \mu \mathrm{~A}$ or less (under standard conditions)	
	Sampling cycle	100 ms	
	Min. detection holding time	2 times the input sampling cycle	
	Assignable functions	RUN/READY, AUTO/MANUAL, REMOTE/LOCAL, auto tuning start/stop, control action direct/ reverse selection, SP group/recipe group selection, fixed value outputs 1 to 8 selection, linear approximation table selection, computer backup selection	
Control	PID control	Proportional band (P)	0.1 to 3200.0 \%
		Integral time (I)	0 to 32000, 0.0 to $3200.0,0.00$ to 320.00 seconds
		Derivative time (D)	0 to $32000,0.0$ to $3200.0,0.00$ to 320.00 seconds
		MV limit	Lower limit: -10.0 to upper limit \% Upper limit: lower limit to +110.0 \%
		Manual reset	-10.0 to +110.0 \%
		Number of PID groups	16
		PID group selection	By console or DI
		MV change limit	0.00 to $320.00 \% / \mathrm{s}$, no limit at 0.0%
		Auto tuning	Automatic PID value setting by limit cycle method. Additionally, one of the following 3 control characteristics can be selected: - Standard - Quick disturbance response - Less up/down fluctuation
		Position proportional dead zone	0.5 to 25.0 \%
		Heat/cool dead zone	-100.0 to +100.0\%
	Direct/reverse action selection	Available	
Output	Relay contact, form 1a1b (outputs $1 \& 2$)	Contact rating: Contact voltage: Service life: Min. switching specifications:	```250 V AC/30 V DC, 3 A (resistive load) 250 V AC or less / 125 V DC or less 100,000 cycles or more (under rated conditions) s: }100\textrm{mA}/5\textrm{V DC```
	Relay contact, form 1a (outputs 1 \& 2)	Contact rating: Contact voltage: Service life: Min. switching specifications:	250 V AC/30 V DC, 1 A (resistive load) 250 V AC or less / 110 V DC or less 100,000 cycles or more (under rated conditions) $10 \mathrm{~mA} / 5 \mathrm{~V}$ DC
	Relay contact, form 1a (outputs 3 to 5)	Contact rating: Contact voltage: Service life: Min. switching specifications:	250 V AC/30 V DC, 3 A (resistive load) 250 V AC or less / 125 V DC or less 100,000 cycles or more (under rated conditions) $100 \mathrm{~mA} / 5 \mathrm{~V}$ DC
	Triac (outputs 3 \& 4, position proportional output)	Compatible motors:	ECM3000F1100, ECM3000F1110 ECM3000F1200 (100 V AC type)
	Current (outputs 3 to 7)	Output current: Load resistance: Output accuracy: Output resolution: Voltage (open):	4 to 20 mA DC (2.4 to 21.6 mA DC) 0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{(} 0.0$ to 22.0 mA DC) 600Ω or less $\pm 0.1 \%$ FS or less (under standard conditions) $1 / 15000$ or more (in the 0 to $20 \mathrm{~mA} \mathrm{DC} \mathrm{FS} \mathrm{range)}$ 23 V DC or less
	Voltage pulse	Output voltage: Load current:	$\begin{aligned} & 12 \mathrm{~V} \text { DC+15 \%/-10 \% } \\ & 30 \mathrm{~mA} \text { or less } \end{aligned}$
	Continuous voltage	Output voltage: Load resistance: Load limit current: Output accuracy: Output resolution:	0 to 5 V DC (0.0 to 5.5 V DC) 1 to 5 V DC (0.6 to 5.4 V DC) 0 to 10 V DC (0.0 to 11.0 V DC) $1 \mathrm{k} \Omega$ or more 12 mA or more $\pm 0.1 \%$ FS or less (under standard conditions) $1 / 20000$ or more (in the 1 to 10 V DC FS range)
	Transmitter power supply function	Output voltage: Load current: Load limit current:	$\begin{aligned} & 24 \mathrm{~V} \text { DC } \pm 10 \% \\ & 30 \mathrm{~mA} \text { or less } \\ & 45 \mathrm{~mA} \end{aligned}$

Digital output (DO)	Event types (assignable to relay output)	PV direct, PV reverse, deviation direct, deviation reverse, absolute value deviation direct, absolute value deviation reverse, MV direct, MV reverse, RSP direct, RSP reverse, SP direct, SP reverse, sum of all alarms, PV range alarm, controller alarm, manual status, READY status, local status, auto tuning execution	
	Settable ranges	PV (direct, reverse): RSP (direct, reverse): Deviation (direct, reverse) Absolute value deviation MV (direct, reverse):	$\begin{aligned} & -19999 \text { to }+32000 U \\ & -19999 \text { to }+32000 U \\ & -19999 \text { to }+32000 U \end{aligned}$ ect, reverse): 0 to +32000U $-10.0 \text { to +110.0 \% }$
	Operation differential (hysteresis) setting range	0 to 200U (except MV, MFB event, process alarm) 0.0 to 20.0 \% for MV, MFB event, process alarm	
	ON delay time	0.1 to 3200.0 seconds	
	Output operation	ON/OFF action, latch action	
	Output rating	Output type: Load resistance: Load current:	open-collector (open drain) sink method 4.5 to 28 V DC $70 \mathrm{~mA} /$ output max. $500 \mathrm{~mA} / \mathrm{all}$ outputs max.
Auxiliary output	Number of outputs	4 max. assignable	
	Output types	PV, SP, DEV, RSP, MV, MFB, etc. can be selected	
	Output method	Current or continuous voltage	
Communications	Communications system	Protocol	RS-485
		Network	Multidrop. Slave station only. Connect up to 31 units.
		Data flow	Half-duplex
		Synchronization method	Start/stop synchronization
	Interface	Transmission system	Balance (differential) type
		Transmission type	Bit serial
		Transmit/receive lines	3
		Speed	4800, 9600, 19200, 38400 bps
		Distance	500m max.
		Protocol	RS-485 (3-wire type)
	Message characters	Character configuration	9 to 12 bits/character
		Data length	7 or 8 bits
		Stop bit length	1 or 2 bits
		Parity bit	Even parity, odd parity, or non-parity
PC loader	Communications line	3-wire type	
	Communications speed	38400 bps (fixed)	
	Recommended cable	Dedicated cable	
Current transformer (CT) input	Number of inputs	2	
	Detection function	When control output is ON: heater line break or overcurrent detection When control output is OFF: final control device short circuit detection	
	Input device	Current transformer (sold separately), 800 turns - QN212A, 5.8 mm dia. hole - QN206A, 12 mm dia. hole	
	Input range	AC 0.0 to 50.0 A	
	Measurement current range	AC 0.4 to 55.0 A	
	Indication accuracy	$\pm 3 \% \mathrm{FS} \pm 1$ digit (AC 0.4 A or more, under standard conditions) excluding CT accuracy	
	Indication resolution	AC 0.1 A	
Motor feedback input (MFB)	Allowable potentiometer value	100 to 2500Ω	
	Indication accuracy	± 0.2 \%FS (standard conditions)	
	Sampling cycle	100ms	
General specifications	Memory backup	EEPROM, battery and double layer capacitor for SRAM	
	Backup life	EEPROM 10 years SRAM 30 min by double layer capacitor (while changing battery, at an ambient temperature of $35^{\circ} \mathrm{C}$ or less, after capacitor is charged for 1 h or more)	
	Power	100 to 240 V AC, $50 / 60 \mathrm{~Hz} \pm 2 \mathrm{~Hz}, 24 \mathrm{~V}$ DC	
	Power consumption	30 VA or less. (C45V: 100 to 240 V AC power model), 40 VA or less. (C46V: 100 to 240 V AC power model), 12 W or less (C45 V: 24 V DC power model), 15 W or less (C46V: 24 V DC power model).	
	Power ON inrush current	35 A or less/10 ms or less (100 to 240 V AC power model), 20 V or less/10 ms (24 V DC power model)	
	Power ON operation	Reset time: $6 \mathrm{~s} \mathrm{max}$. (time until normal operation starts under standard conditions)	
	Battery life	3 years at 10 to $35^{\circ} \mathrm{C}$ ambient temperature, without connection to power	
	Insulation resistance	20 M or more between power supply terminal 1 or 2 and FG terminal 3 (500 V DC megger)	

General specifications	Dielectric strength Standard conditions	1500 V AC for 1 min (100 to 240 V AC power model), 500 V AC for 1 min (24 V DC power model) - Between power supply terminal 1 or 2 or FG terminal 3 and secondary terminal - Between power supply terminal 1 or 2 and FG terminal 3			
		Ambient temperature	$23 \pm 2^{\circ} \mathrm{C}$		
		Ambient humidity	60 ± 5 \% RH		
		Power voltage	105 V AC ± 1 \% (100 to 240 V power model), 24 V DC ± 5 \% (24 V DC power model)		
		Power frequency	$50 \pm 1 \mathrm{~Hz}$ or $60 \pm 1 \mathrm{~Hz}$ (100 to 240 V power model)		
		Vibration resistance	$0 \mathrm{~m} / \mathrm{s}^{2}$		
		Shock resistance	$0 \mathrm{~m} / \mathrm{s}^{2}$		
		Mounting angle	Reference plane $\pm 3^{\circ}$		
		Clear space	100 mm min. vertically and horizontally		
	Operating conditions	Ambient temperature	0 to $50{ }^{\circ} \mathrm{C}$		
		Ambient humidity	10 to 90% RH (without condensation)		
		Power voltage	85 to 264 V AC (100 to 240 V AC power model), 21.6 to 26.4 V DC (24 V DC power model)		
		Power frequency	$50 \pm 2 \mathrm{~Hz}$ or $60 \pm 2 \mathrm{~Hz}$ (100 to 240 V AC power model)		
		Vibration resistance	0 to $2 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz for 2 h each in X, Y, and Z directions)		
		Shock resistance	0 to $10 \mathrm{~m} / \mathrm{s}^{2}$		
		Mounting angle	Reference plane $\pm 10^{\circ}$		
		Altitude	2000 m max.		
		Clear space	50 mm min. above and below		
	Transportation conditions	Ambient temperature	-20 to $+70^{\circ} \mathrm{C}$		
		Ambient humidity	10 to $95 \% \mathrm{RH}$ (without condensation)		
		Vibration resistance	0 to $5 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz for 2h each in X, Y, and Z directions)		
		Shock resistance	0 to $500 \mathrm{~m} / \mathrm{s}^{2}$ (3 times each in X, Y, and Z directions)		
	Front panel protection	IP65			
	Console and case material	Polyphenylene oxide			
	Console and case color	Black			
	Standards compliance	EN61010-1 (CE-LVD), EN61326 (CE-EMC), cUL (UL61010-1)*			
	Overvoltage category	Category II (IEC60364-4-443, IEC60664-1)			
	Mounting	Panel mounted (with dedicated mounting bracket)			
	Mass	C45V: Approx. 400 g (including dedicated mounting bracket) C46V: Approx. 700 g (including dedicated mounting bracket)			
Accessories (included)	Part name	Model	Optional parts (sold separately)	Part name	Model
	Mounting brackets (2)	81405411-004		Mounting brackets (2)	81405411-003
	Gasket	81421863-001 (for C45 V)		Current Transformer	QN206A (5.8 mm dia. hole)
		81421864-001 (for C46 V)			QN212A (12 mm dia. hole)
	User's manual	CP-UM-5445E		Hard cover	81441421-001 (for C45V)
					81441422-001 (for C46V)
				Terminal cover	81441420-001 ${ }^{\text {2 }}$

*1: Depends on the model.
*2: 1 for C45A, 2 for C46A

Table 1. Input types and ranges

Input type	Pv-01	Sensor type	Range		Accuracy
Thermocouple	1	K	-270.0 to $+1372.0^{\circ} \mathrm{C}$	-454 to +2502 ${ }^{\circ} \mathrm{F}$	± 0.1 \% rdg. ± 1 digit $^{*}{ }^{1}$
	2	E	-270.0 to $+1000.0^{\circ} \mathrm{C}$	-454 to $+1832{ }^{\circ} \mathrm{F}$	± 0.1 \% rdg. ± 1 digit $^{*}{ }^{2}$
	3	J	-200.0 to $+1200.0{ }^{\circ} \mathrm{C}$	-328 to +2192 ${ }^{\circ} \mathrm{F}$	± 0.1 \% rdg. ± 1 digit $^{* 3}$
	4	T	-270.0 to $+400.0^{\circ} \mathrm{C}$	-454 to $+752^{\circ} \mathrm{F}$	$\pm 0.5{ }^{\circ} \mathrm{C}{ }^{*}$
	5	B	0.0 to $1800.0^{\circ} \mathrm{C}$	32 to $3272{ }^{\circ} \mathrm{F}$	$\pm 2.0{ }^{\circ} \mathrm{C}{ }^{*}$
	6	R	-50.0 to $+1768.0^{\circ} \mathrm{C}$	-58 to $+3214^{\circ} \mathrm{F}$	± 0.1 \% rdg. ± 1 digit $^{*}{ }^{6}$
	7	S	-50.0 to $+1768.0^{\circ} \mathrm{C}$	-58 to $+3214^{\circ} \mathrm{F}$	± 0.1 \% rdg. ± 1 digit $^{*}{ }^{6}$
	8	W (WRe5-26)	0.0 to $2300.0{ }^{\circ} \mathrm{C}$	32 to $4172{ }^{\circ} \mathrm{F}$	± 0.1 \% rdg. ± 1 digit $^{*}{ }^{7}$
	9	PR40-20	0.0 to $1900.0^{\circ} \mathrm{C}$	32 to $3452{ }^{\circ} \mathrm{F}$	$\pm 8.0{ }^{\circ} \mathrm{C}{ }^{*}$
	10	Ni-NiMo	0.0 to $1300.0^{\circ} \mathrm{C}$	32 to $2372{ }^{\circ} \mathrm{F}$	$\pm 1.4{ }^{\circ} \mathrm{C}$
	11	N	-200.0 to $+1300.0^{\circ} \mathrm{C}$	-328 to $+2372{ }^{\circ} \mathrm{F}$	$\pm 1.4{ }^{\circ} \mathrm{C}^{* 9}$
	12	PL II	0.0 to $1390.0^{\circ} \mathrm{C}$	32 to $2534{ }^{\circ} \mathrm{F}$	$\pm 1.4{ }^{\circ} \mathrm{C}$
	13	DIN U	-200.0 to $+600.0^{\circ} \mathrm{C}$	-328 to $+1112^{\circ} \mathrm{F}$	$\pm 0.7{ }^{\circ} \mathrm{C}{ }^{10}$
	14	DIN L	-200.0 to $+900.0^{\circ} \mathrm{C}$	-328 to $+1652{ }^{\circ} \mathrm{F}$	$\pm 1.0^{\circ} \mathrm{C}^{* 11}$
	15	Gold-iron/Chromel	-273.0 to $+27.0{ }^{\circ} \mathrm{C}$	-459 to $+80^{\circ} \mathrm{F}$	$\pm 1.5{ }^{\circ} \mathrm{C}$
RTD	21	Pt100	-200.0 to $+850.0{ }^{\circ} \mathrm{C}$	-328.0 to $+1562.0^{\circ} \mathrm{F}$	$\pm 0.3^{\circ} \mathrm{C}$
	22		-200.00 to $+300.00^{\circ} \mathrm{C}$	-328.00 to $+572.00^{\circ} \mathrm{F}$	$\pm 0.15{ }^{\circ} \mathrm{C}$
	31	JPt100	-200.0 to $+640.0^{\circ} \mathrm{C}$	-328.0 to $+1184.0^{\circ} \mathrm{F}$	$\pm 0.3{ }^{\circ} \mathrm{C}$
	32		-200.00 to $+300.00^{\circ} \mathrm{C}$	-328.00 to $+572.00^{\circ} \mathrm{F}$	$\pm 0.15{ }^{\circ} \mathrm{C}$
Linear (DC voltage/ current)	41	Current	4 to 20 mA		$\pm 0.1 \%$ FS ± 1 digit
	42		0 to 20 f		$\pm 0.1 \%$ FS ± 1 digit
	43	Voltage	0 to 10 mV		± 0.1 \% FS ± 1 digit
	44		-10 to +10 mV		± 0.1 \% FS ± 1 digit
	45		0 to 100 mV		± 0.1 \% FS ± 1 digit
	46		-100 to +100 mV		± 0.1 \% FS ± 1 digit
	47		0 to 1V		± 0.1 \% FS ± 1 digit
	48		-1 to +1V		± 0.1 \% FS ± 1 digit
	49		1 to 5V		± 0.1 \% FS ± 1 digit
	50		0 to 5V		$\pm 0.1 \%$ FS ± 1 digit
	51		0 to 10 V		± 0.1 \% FS ± 1 digit

*1 At $400^{\circ} \mathrm{C}$ and above.
$\pm 0.5^{\circ} \mathrm{C}\left(<+400\right.$ to $\left.-100^{\circ} \mathrm{C}\right)$
$\pm 1.0^{\circ} \mathrm{C}\left(<-100\right.$ to $\left.-200^{\circ} \mathrm{C}\right)$
$\pm 20.0^{\circ} \mathrm{C}\left(<-200^{\circ} \mathrm{C}\right)$
*2 At $400^{\circ} \mathrm{C}$ and above.
$\pm 0.5^{\circ} \mathrm{C}\left(<+400\right.$ to $\left.-100^{\circ} \mathrm{C}\right)$
$\pm 1.0^{\circ} \mathrm{C}\left(<-100\right.$ to $\left.-200^{\circ} \mathrm{C}\right)$ $\pm 15.0^{\circ} \mathrm{C}\left(<-200^{\circ} \mathrm{C}\right)$
*3 At $400^{\circ} \mathrm{C}$ and above.
$\pm 0.5^{\circ} \mathrm{C}\left(<+400\right.$ to $\left.-100^{\circ} \mathrm{C}\right)$
$\pm 1.0^{\circ} \mathrm{C}\left(<-100^{\circ} \mathrm{C}\right)$
*4 At $-100{ }^{\circ} \mathrm{C}$ and above. $\pm 1.0^{\circ} \mathrm{C}\left(<-100\right.$ to $\left.-200^{\circ} \mathrm{C}\right)$ $\pm 10.0^{\circ} \mathrm{C}\left(<-200^{\circ} \mathrm{C}\right)$
*5 At $800^{\circ} \mathrm{C}$ and above.
$\pm 4.0^{\circ} \mathrm{C}\left(<800\right.$ to $\left.260^{\circ} \mathrm{C}\right)$ $\pm 70^{\circ} \mathrm{C}\left(<260^{\circ} \mathrm{C}\right)$
*6 At $1000^{\circ} \mathrm{C}$ and above. $\pm 2.0^{\circ} \mathrm{C}\left(<1000^{\circ} \mathrm{C}\right.$ to $\left.0^{\circ} \mathrm{C}\right)$ $\pm 4.0^{\circ} \mathrm{C}\left(<0^{\circ} \mathrm{C}\right)$
*7: At $1400^{\circ} \mathrm{C}$ and above. $\pm 1.5^{\circ} \mathrm{C}\left(<1400^{\circ} \mathrm{C}\right)$
*8 At $800^{\circ} \mathrm{C}$ and above. $\pm 20.0^{\circ} \mathrm{C}\left(<800\right.$ to $\left.300^{\circ} \mathrm{C}\right)$ $\pm 40.0^{\circ} \mathrm{C}\left(<300^{\circ} \mathrm{C}\right)$
*9 At $0^{\circ} \mathrm{C}$ and above. $\pm 4.0^{\circ} \mathrm{C}\left(<0^{\circ} \mathrm{C}\right)$
${ }^{*} 10$ At $0^{\circ} \mathrm{C}$ and above. $\pm 1.0^{\circ} \mathrm{C}\left(<0^{\circ} \mathrm{C}\right)$
*11 At $0^{\circ} \mathrm{C}$ and above. $\pm 1.5^{\circ} \mathrm{C}\left(<0^{\circ} \mathrm{C}\right)$

Standards for input sensors

- Thermocouple

K, E, J, T, B, R, S, N: JIS C 1602-1995
WRe5-26: ASTM E988-96
PR40-20: ASTM E1751-00
Ni-NiMo: ASTM E1751-00
PL II:
ASTM E1751-00
DIN U, DIN L: DIN 43710-1985
Gold-iron/Chromel: ASTM E1751-00

- RTD

Pt 100, JPt 100: JIS C 1604-1989
Note: For PV21 input, Pv-01 settings 41, 42, 49, 50 and 51 can be used.
For PV22 input, Pv-01 settings 49, 50 and 51 can be used.

I	II	III	IV	V	VI	VII	VIII	IX	X	Descriptions
Basic Model	Input	Power	Outputs 1, 2	Outputs 3, 4	Output 5	Outputs 6, 7	Option	Additional processing 1	Additional processing 2	
C45V										Computation function model
	2									2-input model (full-multi: 2)
	3									3-input model (full-multi: 1, DC current / voltage: 2)
		A								100 to 240 V AC
		D								24 V DC**
			1							1a1b relay: 1
			2							1a relay: 2
				CO						Current (OUT3)
				D0						Continuous voltage (OUT3)
				V0						Voltage pulse (OUT3)
				RR						1a relay + 1a relay
				CC						Current + current
				VV						Voltage pulse + voltage pulse
				CV						Current (OUT3) + voltage pulse (OUT4)
				SS						Motor drive (triac), MFB input: 1
					0					None
					R					1a relay
					C					Current
					D					Continuous voltage
					P					Power supply for signal transmitter
						0				None
							0			DI: 2 (terminals F1 and F2) ${ }^{\text {*1 }}$
							1			DI: $10{ }^{*}$
							2			DI: 2, DO: $8{ }^{*}$
							3			DI: 2, DO: 8, RS-485*
							4			CT input: $2^{* 3}$
							5			CT input: 2, DI: $8^{* 3}$
							6			CT input: 2, DO: $8^{* 3}$
							7			CT input: 2, DO: 8, RS-485 ${ }^{\text {* }}$
								0		None
								D		With inspection data
								Y		With traceability certification
									0	None
									1	Orange color for all LEDs
									A	cUL
									B	cUL Orange color for all LEDs

*1. When "SS" is selected for outputs 3 and 4, DI: 0 .
*2. When "SS" is selected for outputs 3 and 4, DI: 8 .
*3. When "SS" is selected for outputs 3 and 4, this option code is not selectable.
Note Additionally, tropicalization and anti-sulfidation treatments can be ordered. However, there are some specifications restrictions. For details, contact the azbil Group.

*1. When "CC" is selected for outputs 3 and 4 , and " C " for output 5 , this code 3 is not selectable.
*2. When "SS" or "R1" is selected for outputs 3 and 4, DI: 0.
*3. When "SS" or "R1" is selected for outputs 3 and 4, DI: 12.
*4. When "SS" or "R1" is selected for outputs 3 and 4, this option code is not selectable.

Note Additionally, tropicalization and anti-sulfidation treatments can be ordered. However, there are some specifications restrictions. For details, contact the azbil Group.

Dimensions

- C45V

- C46V

! Handling Precautions

- When fastening this controller onto the panel, tighten the mounting bracket screws until there is no play between the bracket and panel, and then turn one more full turn. Overtightening the screws may deform the controller case.

- Panel cutout diagram

- C46V

Gang-mounting

1. Handling Precautions

- If three or more units are gang-mounted horizontally, the maximum allowable ambient temperature is $40^{\circ} \mathrm{C}$.

Console parts and functions

- C45V Front Panel

(1) Upper display: For PV values (present temperature, etc.) or setup items.
(2) Lower display: For SP values (set temperature, etc.) or other parameter values.
(3) Auxiliary display:

Displays group No., loop* No., and channel No. of setup item.

* The series of connections from PV input to PID operation through to control output is generically called a loop.
(4) Multi-status (MS) indicator:

For MV, DI/DO status, etc.
(5) Mode indicator lights:
$\begin{array}{ll}\text { rdy: } & \text { Ready } \\ \text { rsp: } & \text { Remote setup input } \\ \text { man: } & \text { Manual } \\ \text { out1-7: } & \text { Control outputs 1-7 (1-5 for C45V) }\end{array}$
(6) User function indicators:
uf1-4: Display user-assigned items, (uf1, 2 for C45V)
(7) Loop number indicators:
pv1-4: Indicate the loop number of the displayed PV value (pv1, 2 for C 45 V)
(8) $\mathrm{v}, \wedge,<,>$: Increment numeric values and shift between digits or settable items.
Changes AUTO/MANUAL mode.
(9) auto/man: Selects or sets LOCAL SP or EVENT
(10) sp/ev:
(11) display: Changes the display contents in operation display mode.
Changes the setting mode.
Used during setup, especially to finalize the user's selection of a value.
Perform user-assigned functions (C46V only).
For auto-tuning executing/cancellation, or for user-assigned functions.
Changes between remote and local set point, or executes user-assigned functions.
(17) Loader jack: For connection of PC loader cable.

C45V Back

C46V Back

A (C45V/46V)

Details		
		Power supply (1) AC power supply 100 to 240 V AC (2) DC power supply 24 V DC (non polar)
		Outputs 1, 2 (OUT1/OUT2) (1) Relay (1a1b) (2) Relay (1a)
		Output 3 (OUT3) (1) Relay (2) Triac (3) Current, voltage pulse, continuous voltage
		Output 4 (OUT4) (1) Relay (2) Triac (3) Current, voltage pulse
(1) (11)		Output 5 (OUT5) (1) Relay (2) Current, continuous voltage, transmitter power supply

D (C46V)	
Details	
	$\begin{aligned} & \hline \text { Digital input } \\ & \text { (DI) } \end{aligned}$
(10) -	Unused
(11) -	
(12) -	

F (C45V/46V)

■ Timing of computation pattern execution
Two sets of computation patterns can be executed, one after PV input and one before MV output.

<Processing flow for each sampling cycle>

Input computation
\downarrow
SP processing
\downarrow
Control computation
\downarrow
Event processing
\downarrow
Logical operations
\downarrow
Output computation
\downarrow Output processing \downarrow Digital output processing

Computation patterns
Twenty one types of mathematical/logical operation can be assigned to up to 10 computation units (F1 to F10).

- PV and MV can be assigned to computation input 1 or computation input 2 .
- Computation patterns are executed in numerical order from F1 to F10.
- Computation output is a standard numerical value.

Operation type

Type setting	Abbrev.	Description
0	NOP	No operation
1	FLT	First order lag filter
2	R/B	Ratio/bias
3	HLL	High/low limiter
4	DRL	Change rate limiter
5	LED	Differentiation
6	L/L	Advance/delay
7	ABS	Absolute value
8	TBL	Linearization table
9	MAX	Maximum value hold
10	MIN	Minimum value hold
11	HLD	Hold
12	PRS	Preset value
13	SPR	Soft (slow) preset value
$14-30$	NOP	No operation
31	ADD	Addition/subtraction
32	MUL	Multiplication
33	DIV	Division
34	HSE	High selector
35	LSE	Low selector
36	SWS	Switch selector
37	CPS	Change point selector
38	SSS	Soft (slow) switching selector

Azbil Corporation

Advanced Automation Company

1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan
URL: http://www.azbil.com/

