C7G Multi-loop Controller with Multifunction Display

Overview

The C7G multi-loop controller with multifunction display (hereafter also called simply "this device") can calculate diagnostic parameters, known collectively as the health index, that help to predict failure of other equipment, in addition to calculations for PID (proportional, integral and derivative) control of process variables such as temperature, pressure, flow rate, pH , and liquid level.
The controller consists of a display unit with a 3.5-inch QVGA LCD and a touch panel, as well as a main unit capable of controlling up to four loops with an input sampling cycle of 10 ms and an indication accuracy of $\pm 0.1 \% \mathrm{FS}$.
The display unit and main unit can be installed separately for installation flexibility.
A wide variety of interfaces, including Ethernet, RS-485 serial communication, microSD memory card, Micro USB port, and 7 digital input/outputs are provided as standard features. Setup, operation, and monitoring can be easily accomplished using the display unit and Smart Loader Package.
This controller is compliant with the IEC Directive and is CE marked.

Features

- High-speed and high-accuracy control is available with an input sampling cycle as fast as 10 ms and an indication accuracy of $\pm 0.1 \%$ FS. Process data can be stored with the compact data storage function (microSD card).
- Diagnostic and management information is created with our unique process data-processing technology (the health index function).
- One module can execute PID control for up to 4 loops.
- Various information is displayed on a 3.5-inch QVGA LCD with easy touchscreen operation.

- The display unit and main unit can be installed separately Standard distance: less than 30 m If display unit is separately powered: 30 to 100 m
- Protective structure of display face: IP67
- Ethernet and RS-485 serial communications (Modbus) are supported as standard features.
- For setup and file management the SLP-C7 Smart Loader Package can be used.
- Parameters can be downloaded to the C7G when it is powered by the USB bus power function when the MicroUSB port and the PC are connected with a USB cable.

C7G Basic Functional Blocks

Specifications

Analog Input block		Input type	Full multi-range for thermocouple, resistance temperature detector (RTD), DC current, and DC voltage
		No. of control loops	4 loops max. (configurable by the loop type setting)
		Range type	F Table 1, "Input types and ranges" (p.8)
		Sampling cycle	$10 \mathrm{~ms}, 50 \mathrm{~ms}, 100 \mathrm{~ms}$ (factory default: 50 ms)
		Burnout	Depends on the input range ($\mathrm{F}^{\mathbf{\beta}}$ Table 1, "Input types and ranges," p. 8)
		Over-range judgment	Below -10\% or above 110% of the range
		Decimal point position	0 to 4 digits after the decimal point are displayed. Values are displayed so that the entire value does not exceed 5 digits. (Note: Effective resolution depends on the range.)
	Thermocouple	Reference contact compensation accuracy	$\pm 0.5^{\circ} \mathrm{C}$ (ambient temperature 21 to $27^{\circ} \mathrm{C}$, under standard conditions) $\pm 1.5^{\circ} \mathrm{C}$ (ambient temperature 0 to $50^{\circ} \mathrm{C}$, under standard conditions except for ambient temperature)
		Reference contact compensation method	Compensation within the C7G
		Input bias current	$0.12 \mu \mathrm{~A}$ max. (under standard conditions) *From the positive (+) terminal
		Allowable input voltage	-1.5 to +1.5 V
	Resistance temperature detector (RTD)	Measuring current	1.0 mA (typical, from terminals A and B, under standard conditions)
		Allowable wiring resistance	85Ω max. (per wire)
		Effect of wiring resistance	$0.013^{\circ} \mathrm{C} / \Omega$
	DC voltage DC current	Input bias current	0 to 10 V range : $10 \mu \mathrm{~A}$ max. (under standard conditions) $1-5 \mathrm{~V}$ or $0-5 \mathrm{~V}$ range: $5 \mu \mathrm{~A}$ max. (under standard conditions)
		Allowable input voltage	DC voltage input: -15 to +15 V DC current input: -1.5 to +1.5 V
		Input impedance	DC voltage input: $1 \mathrm{M} \Omega \mathrm{min}$. DC current input: 50Ω
		Scaling	$-32000 \text { to }+32000 \mathrm{U}$ (Max. 5 digits within the above range, max. 4 digits after the decimal point, reverse scaling possible)
Display unit (included) (C7D-xxxxxx)		Screen specifications	3.5-inch QVGA LCD
		Status display (LED):	1 (power)
		Operation buttons	Touchscreen (resistive) and 3 hardware buttons
		Display power source	Main unit (if distance from connector on the main unit or connector on the additional display unit block to the display unit is less than 30 m) 5 V DC external power supply (if distance from connector on the main unit or connector on the additional display unit block to the display unit is 30 to 100 m)
		Protection rating	IP67 (front of display unit only)
		Interface language	English/Japanese (switchable)
		Service life of LCD	5 years (at ambient temperature of $25^{\circ} \mathrm{C}$ and brightness setting 4, for half-life of backlight brightness)
DI (digital input)/ DO (digital output)		No. of I/Os	7 max. (select DI, DO, or TP by setting), shared common Note: TP (time proportioning output) can be selected for DI/DO terminals 4 to 7 .
block	Digital input	Compatible output type	Non-voltage contacts or open collector (sink type)
		Open terminal voltage	7 V max.
		Terminal current (when shorted):	1 mA (under standard conditions)
		On-state contact resistance (no-voltage contact)	500Ω max. (under standard conditions)
		Off-state contact resistance (no-voltage contact)	$100 \mathrm{k} \Omega$ max. (under standard conditions)
		Allowable on-state residual current for open collector	1 V max. (under standard conditions)
		Allowable off-state residual current for open collector	$100 \mu \mathrm{~A}$ max. (under standard conditions)
		Input sampling cycle	10 ms
		Minimum pulse width for ON detection	$20 \mathrm{~ms} \mathrm{min}. \mathrm{(for} 10 \mathrm{~ms} \mathrm{sampling} \mathrm{cycle)}$,40 ms min . (50 or 100 ms sampling cycle)
		Function assignment	RUN/READY mode selection, AUTO/MANUAL mode selection, LSP/RSP mode selection, SP group selection, CDS stop/start, etc.

DI (digital input)/ DO (digital output) block	Digital output	Output method	Open collector (sink type)		
		Load voltage	4.5 to 28.8 V DC		
		Maximum load current	100 mA for each terminal		
		Overcurrent detection	130 mA or more When an overcurrent is detected, the output is turned OFF, and the status is checked every 5 seconds. If the status returns to normal, the output returns to normal automatically.		
		On-state residual voltage	0.5 V max. (under standard conditions)		
		Off-state leak current	$100 \mu \mathrm{~A} \mathrm{max}$. (under standard conditions)		
		Function assignment	Select an event status or a standard bit code		
	Time proportional output	Output method	Same as digital output		
		Number of outputs	4 max. (DI/DO terminals 4 to 7)		
		Min. OFF time / ON time	In time proportional cycle shorter than $10 \mathrm{~s}: 1 \mathrm{~ms}$ In time proportional cycle of 10 s or longer: 250 ms		
Control unit		Control operation	PID control (reverse action, direct action, heating and cooling action), ON/OFF control (reverse action, direct action)		
		PID Control	Proportional band (P)	0.1 to 3200 \% (5 digits max. within this range, 4 digits max. after the decimal point)	
		Integral time (I)	0 to 32000 s (5 digits max. within this range, 4 digits max. after the decimal point) No integral calculation when the setting is 0 .		
		Derivative time (D)	0 to 32000 s (5 digits max. within this range, 4 digits max. after the decimal point) No derivative calculation when the setting is 0 .		
		MV limits	-10 to $+110 \%$ (5 digits max. within this range, 4 digits max. after the decimal point)		
		Manual reset	-10 to $+110 \%$ (5 digits max. within this range, 4 digits max. after the decimal point)		
		Number of PID groups	8 groups per loop		
		PID group selection	SP group interlocking system		
		MV change limit	0 to $10000 \% / \mathrm{s}$ (5 digits max. within this range, 4 digits max. after the decimal point) No limit when the setting is 0 .		
		Auto-tuning	PID automatic setting using the limit cycle method		
		Control cycle	Same as sampling cycle		
		$\begin{aligned} & \text { SP } \\ & \text { (LSP: Local SP) } \end{aligned}$	Number of LSP groups	8 groups per loop	
		SP ramp unit	0: s, 1: min, 2: h		
		Ramp up and down slopes	0 to 32000		
		Direct/reverse operation selection	Switchable		
		Heating/cooling control deadband	-100.0 to +100.0 \%		
Analog input processing unit			Linear scaling low and high limits	-32000 to +32000 (5 digits max. within this range, 4 digits max. after the decimal point)	
		Filter	0.0000 to 120.00 s		
		Ratio	0.0010 to 10.000		
		Bias	-32000 to +32000 (5 digits max. within this range, 4 digits max. after the decimal point)		
Event functions			Operation type	PV high limit, PV low limit, PV high and low limits, deviation high limit, deviation low limit, deviation high and low limits, deviation high limit (final SP basis), deviation low limit (final SP reference), deviation high and low limits (final SP basis), SP high limit, SP low limit, SP high and low limits, MV high limit, MV low limit, MV high and low limits, MFB high and low limits, standard numerical code high limit, standard numerical code low limit, standard numerical code high and low limits, PV change rate, PV change rate high limit, PV change rate low limit, standard numerical code change rate high limit, standard numerical code change rate low limit, Alarm (state), READY (state), MANUAL (state), RSP (state), AT running (state), SP ramp running (state), control direct action (state), control with estimated MFB (state), timer (state)	
		Number of events	16		
		Main setting / subsetting	-32000 to +32000 (5 digits max. within this range, 4 digits max. after the decimal point)		
		Hysteresis	0 to 32000 (5 digits max. within this range, 4 digits max. after the decimal point)		
		READY mode operation	Selectable from "continuation" and "forced OFF."		
		Direct/reverse	Select the polarity to turn ON/OFF in event output		
		Standby	0 : None, 1: Standby, 2: Standby + standby when the SP is modified		
		On-delay time	0 to 3200 s (4 digits max. within this range, 4 digits max. after the decimal point)		
		OFF-delay time	0 to 3200 s (4 digits max. within this range, 4 digits max. after the decimal point)		
Approximation by linearization		Number of groups	8		
		Breakpoints per group	10		
		Available for	Analog input, analog output, voltage pulse output		

Analog current output block	Current output (1)	Type	4-20 mA DC / 0-20 mA DC
		Output type	Control output (MV), process value (PV), set value (SP), standard numerical code, etc.
		Accuracy	0.1 \% FS
		Allowable load resistance	600Ω max.
		Output resolution	1/16000 min.
	CT (current) input (1)	Recommended current transformer	QN206A (hole dia. $5.8 \mathrm{~mm}, 800$ turns), QN212A (hole dia. $12 \mathrm{~mm}, 800$ turns) Note: Not UL-certified
		Measuring current range	0.4-50.0 A AC, $50 / 60 \mathrm{~Hz}$ (peak current: $71 \mathrm{~A}, 800$ turns, 1 power wire loop)
		Maximum allowable current	70 AAC (peak current: 99 A max. with 800 turns and 1 pass of the power wire)
		Indication accuracy	$\pm 1 \% \mathrm{FS} \pm 1$ digit (under standard conditions, CT accuracy is not included)
		Indication resolution	0.1 AAC
		Indication update cycle	100 ms
	VT (voltage) input (1)	Recommended voltage transformer	81406725-003 Note: Not UL-certified.
		Voltage measurement range	24 to $240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$ (peak voltage: 339 V max.; recommended voltage: transformer primary side 200 V , secondary side 10 V)
		Maximum allowable voltage	264 V AC (peak voltage: 373 V ; recommended voltage transformer primary side: 200 V , secondary side: 10 V)
		Indication accuracy	$\pm 1 \%$ FS ± 1 digit
		Indication resolution	0.1 V AC
		Input impedance	$160 \mathrm{k} \Omega$ (typ)
		Indication update cycle	100 ms
Voltage pulse output block	Voltage pulse output (1)	Output voltage	12 V DC +15/-10 \% (under standard conditions)
		Allowable current	25 mA max
		Load limit current	$30 \mathrm{~mA} \pm 10$ \%
		OFF-state leak current	$100 \mu \mathrm{~A}$ max. (under standard conditions)
		Output response time	100μ s max. for $10 \leftrightarrow 90 \%$ of output voltage
	CT (current) input (2)	Specifications	Same as CT (current) input for the analog current output block
Motor drive output block	Relay output OPEN CLOSE	Contact configuration	Switching between OPEN output and CLOSE output (with function for turning both outputs OFF at the same time)
		Contact rating	$250 \mathrm{~V} \mathrm{AC} ,2 \mathrm{~A}(\cos \varphi=0.4) ; 24 \mathrm{~V} \mathrm{DC} ,2.5 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=0.7 \mathrm{~ms})$
		Contact voltage	250 V AC / 125 V DC max.
		Service life	100,000 cycles min. (at the rated specifications)
		Minimum requirements for switching	24 V DC, 40 mA
		Interlock	With prevention of simultaneous ON if contact welding occurs
	Motor feedback (MFB) input 1	Allowed potentiometer resistance	100 to 2500Ω (wiring resistance included)
		Indication accuracy	± 0.5 \% FS (under standard conditions)
		Sampling cycle	100 ms
		Operation at burnout	Y line break: downscale Other line break: upscale
Clock block (with battery)		Clock function	Hours, minutes, seconds, calendar (years 2000 to 2099, supports leap years)
		Clock accuracy	Monthly error: $\pm 65 \mathrm{~s}$ (under standard conditions)
		Service life	10 years (battery life when not energized, under standard conditions)
		Built-in battery	Lithium battery
		Block replacement	Possible (optional parts sold separately)
Additional display unit block		Number of connectable units	1
		Connector	RJ-45
External communication	Ethernet	Transmission line type	Compliant with IEEE 802.3u 100BASE-TX (FastEthernet)
		Communication method	Full duplex
		No. of connections	3 (for Modbus/TCP and loader communication via Ethernet)
		Transmission speed	100 Mbps max.
		No. of physical ports (connectors)	1 (RJ-45)
		Cable	UTP cable (4P) Cat 5e min. (straight) (ANSI/TIA/EIA-568-B both ends)
		Protocol:	Modbus/TCP, Mitsubishi SLMP (3E) (for PLC link communication)

External communication	RS-485 communication	Signal level	RS-485-compliant
		Network	Multidrop (up to 31 slave stations for 1 host station)
		Communications/synchronization type	Half-duplex, start-stop synchronization
		Maximum cable length	500 m
		No. of communication wires	3-wire system
		Transmission speed	9600, 19200, 38400, 57600, 115200 bps
		Terminating resistor	External (120 Ω, $1 / 2 \mathrm{~W}$ min.)
		Data length	8 bits
		Stop bits	1 or 2 bits
		Parity bit	Even parity, odd parity, or no parity
		Protocol	Modbus/RTU
	Loader communication	Dedicated PC loader	SLP-C7FJ91 (free version), SLP-C7-J91 (paid version)
		Cable	USB-to-Micro-USB (Type A/B) cable (USB 2.0 supported, 5 m max.) or Ethernet cable
		Power supply	When connected with a USB cable, the device can be powered by the PC and parameters can be changed.
Data storage		SD	microSD/SDHC-compliant (4GB), for the compact data storage and health index functions
General specifications		Backup memory	EEPROM (durability: 1 million erase-write cycles max., for parameter settings)
		Power consumption	AC models: 25 VA 10 W max. DC models: 12 W max.
		Power-on inrush current	25 A max./10 ms max.
		Start delay at power-on	10 s max. (the time until normal operation begins under standard conditions)
		Allowable transient power loss	AC models: 20 ms min . DC models: 5 ms min .
		Insulation resistance	$20 \mathrm{M} \Omega$ min. (between power supply terminal (\#1 or \#2) and frame ground terminal (\#3), with a 500 V DC megger)
		Dielectric strength	AC models: 1500 V AC for 1 min Between AC power supply terminal (\#1 or \#2) and frame ground terminal (\#3) Between AC power supply terminal (\#1 or \#2) and secondary terminals (except for motor block output terminals (\#1 to \#3)) Between AC power supply terminal (\#1 or \#2) and motor block terminals (\#1 to \#3) Between motor block output terminals (\#1 to \#3) and frame ground terminal (\#3) Between motor block output terminals (\#1 to \#3) and secondary terminals other than motor block output terminals (\#1 to \#3) DC models 1500 V AC for 1 min Between motor block output terminals (\#1 to \#3) and frame ground terminal (\#3) Between motor block output terminals (\#1 to \#3) and DC power supply terminal (\#1 or \#2) Between motor block output terminals (\#1 to \#3) and secondary terminals other than motor block output terminals (\#1 to \#3) 500 V AC for 1 min Between DC power supply terminal (\#1 or \#2) and frame ground terminal (\#3) Between DC power supply terminal (\#1 or \#2) and secondary terminals other than motor block output terminals (\#1 to \#3)
		Case material	Main unit: Modified PPE (case), polycarbonate (board holder, front mask) Display unit: Modified PPE (case), polycarbonate (back cover), PET film (protective sheet)
		Case color	Black
		Applicable standards	EN 61010-1, EN 61326-1 (for use in industrial locations) Note: During EMC testing, the reading or output may fluctuate by the equivalent of $\pm 10 \%$ FS. cULus: UL 61010-1, CSA C22.2 No. 61010-1 (applicable model needs to be selected)
		Overvoltage category	Category II (IEC 60364-4-443, IEC 60664-1)
		Installation	Main unit: Mounting on a DIN rail (standard) or on the display unit using the mounting bracket Display unit: Mounting using $\varphi 3$ screws (standard) or the mounting bracket (mount in a $92 \times 92 \mathrm{~mm}$ hole)
		Weight	Main unit: 500 g max. Display unit: 150 g max. Integrated mounting bracket: 150 g max.
		Built-in clock accuracy	Monthly error: $\pm 140 \mathrm{~s}$ ($\pm 65 \mathrm{~s}$ if the clock block with battery is used) Note: The time is reset to 00:00:00 1/1/2000 (default) at power-on (including power restoration). Note: For a firmware version of the MAIN block 3.*.* or earlier (* represents any number), the time is reset to 00:00:00 1/1/2014 (default).

General specifications	Standard conditions	Ambient temperature	$23{ }^{\circ} \mathrm{C}-2 /+5{ }^{\circ} \mathrm{C}$	
		Ambient humidity	60 ± 5 \% RH	
		Power voltage	AC models: 105 V AC ± 10 \%. DC models: 24 V DC ± 5 \%	
		Power frequency	AC models: $50 \mathrm{~Hz} \pm 1 \%, 60 \mathrm{~Hz} \pm 1 \%$	
		Vibration	$0 \mathrm{~m} / \mathrm{s}^{2}$	
		Shock	$0 \mathrm{~m} / \mathrm{s}^{2}$	
		Mounting angle	Main unit: Reference plane $\pm 3^{\circ}$, Display unit: No restriction (if mounted separately from the main unit)	
		Space	Reference plane $\pm 10^{\circ}$ (main unit, and main unit and display unit in integrated mounting), no restriction for display unit in standard mounting	
	Operating conditions	Ambient temperature	0 to $50^{\circ} \mathrm{C}$ (0 to $40^{\circ} \mathrm{C}$ if 2 or more main units are gang-mounted), 0 to $50^{\circ} \mathrm{C}$ (display unit)	
		Ambient humidity	10 to $90 \% \mathrm{RH}$ (without condensation)	
		Rated power	AC models: 100 to 240 V AC (operating input voltage: 85 to 264 V AC) DC models: 24 V DC (operating input voltage: 20.4 to 28.8 V DC)	
		Power frequency	AC models: $50 \mathrm{~Hz} \pm 2$ \% or $60 \mathrm{~Hz} \pm 2 \%$	
		Vibration	0 to $5 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz for 2 h each in x, y, and z directions)	
		Shock	0 to $100 \mathrm{~m} / \mathrm{s}^{2}$	
		Mounting angle	Reference plane $\pm 10^{\circ}$ (main unit, and main unit and display unit in integrated mounting), no restriction for display unit in standard mounting	
		Altitude	2000 m max.	
		Pollution degree	2	
		Installation location	Indoors	
		Space	50 mm min. above and below No space is needed around the display unit	
	Transportation and storage conditions	Ambient temperature	-20 to $+70^{\circ} \mathrm{C}$	
		Ambient humidity	10 to $95 \% \mathrm{RH}$ (without condensation)	
		Vibration	0 to $10 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz for 2 h each in x, y, and z directions)	
		Shock	0 to $300 \mathrm{~m} / \mathrm{s}^{2}$ (3 times each in x, y, and z directions)	
Accessories		Item	Qty.	Application
	Standard gasket		1	For the display unit of the standard model (C7G _ 4).
	Display unit mounting screws (6 mm)		5	Standard model (C7G _ 4)
	Display unit mounting screws (10 mm)		5	Standard model (C7G _ 4)
	Set screws (for securing temporarily)		2	Standard model (C7G _ 4)
	Gasket with $92 \times 92 \mathrm{~mm}$ hole		1	Integrated mounting model (C7G _ 3)
	Integrated-mounting bracket		1	Integrated mounting model (C7G _ 3)
	Display unit mounting screws (6 mm)		5	Integrated mounting model (C7G _ 3)
	Integrated-mounting cable		1	Integrated mounting model (C7G _ 3)

Table 1. Input types and ranges

Input type	Range type Nos.	Sensor	Range		Accuracy	Resolution	Burnout
Thermocouple	1	K	-200 to	$+1200{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit *1	$0.1{ }^{\circ} \mathrm{C}$	Upscale
	2	K	0 to	$1200{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	(110 \% FS)
	3	K	0 to	$800^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
	4	K	0 to	$600^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
	5	K	0 to	$400{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
	6	K	-200 to	$+400{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit *1	$0.1{ }^{\circ} \mathrm{C}$	
	7	K	-200 to	$+200^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit *1	$0.1{ }^{\circ} \mathrm{C}$	
	8	J	0 to	$1200{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
	9	J	0 to	$800^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
	10	J	0 to	$600{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
	11	J	-200 to	$+400{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit *1	$0.1{ }^{\circ} \mathrm{C}$	
	12	E	0 to	$800^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
	13	E	0 to	$600{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
	14	T	-200 to	$+400{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit *1	$0.1{ }^{\circ} \mathrm{C}$	
	15	R	0 to	$1600{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit *2	$0.1{ }^{\circ} \mathrm{C}$	
	16	S	0 to	$1600{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit *2	$0.1{ }^{\circ} \mathrm{C}$	
	17	B	0 to	$1800{ }^{\circ} \mathrm{C}$	± 0.2 \% FS ± 1 digit *3	$0.1{ }^{\circ} \mathrm{C}$	
	20	WRe5-26	0 to	$1400{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
	21	WRe5-26	0 to	$2300{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	

*1. For -200 to $0^{\circ} \mathrm{C}, \pm 0.2 \% \mathrm{FS} \pm 1$ digit
${ }^{*}$ 2. For 0 to $100^{\circ} \mathrm{C}, \pm 0.2 \% \mathrm{FS} \pm 1$ digit
${ }^{*} 3$. For 0 to $260^{\circ} \mathrm{C}, \pm 4 \% \mathrm{FS} \pm 1$ digit. For 260 to $800^{\circ} \mathrm{C}, \pm 0.4 \% \mathrm{FS} \pm 1$ digit

Input type	Range	Sensor	Range		Accuracy	Resolution	Burnout
Resistance temperature detector (RTD)	41	Pt100	-200 to	$+500{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Upscale } \\ (110 \% \text { FS }) \end{gathered}$
	43	Pt100	-200 to	$+200{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	45	Pt100	-100 to	$+300{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	47	Pt100	-100 to	$+200{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	49	Pt100	-100 to	$+150{ }^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	51	Pt100	-50 to	$+200{ }^{\circ} \mathrm{C}$	$\pm 0.1 \% \mathrm{FS} \pm 1$ digit	$0.01{ }^{\circ} \mathrm{C}$	
	53	Pt100	-50 to	$+100^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	55	Pt100	-60 to	$+40^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	57	Pt100	-40 to	$+60^{\circ} \mathrm{C}$	$\pm 0.1 \% \mathrm{FS} \pm 1$ digit	$0.01{ }^{\circ} \mathrm{C}$	
	59	Pt100	-10 to	$+60^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	61	Pt100	0 to	$100^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	63	Pt100	0 to	$200^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	65	Pt100	0 to	$300^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.01{ }^{\circ} \mathrm{C}$	
	67	Pt100	0 to	$500^{\circ} \mathrm{C}$	± 0.1 \% FS ± 1 digit	$0.1{ }^{\circ} \mathrm{C}$	
Linear	86	Voltage (V)	1 to	5 V	± 0.1 \% FS ± 1 digit	1/90000 or better	Downscale (-10 \% FS)
	87	Voltage (V)	0 to	5 V	± 0.1 \% FS ± 1 digit		Burnout not detected (around 0 \% FS)
	88	Voltage (V)	0 to	10 V	± 0.1 \% FS ± 1 digit		Burnout not detected (around 0 \% FS)
	89	Current (mA)	0 to	20 mA	± 0.1 \% FS ± 1 digit		Burnout not detected (around 0 \% FS)
	90	$\begin{aligned} & \text { Current } \\ & (\mathrm{mA}) \end{aligned}$	4 to	20 mA	± 0.1 \% FS ± 1 digit		Downscale (-10 \% FS)

Input type	Range type Nos.	Sensor	Range	Accuracy	Resolution	Burnout
Not used	0	None	Always 0	---	---	-

Input sensor standards reference

$\begin{array}{lll}\text { Thermocouple } & \text { K, E, J, T, B, R, S: } & \text { JIS C 1602-2015 } \\ & \text { WRe5-26: } & \text { ASTM E988-96 (Reapproved 2002) } \\ & & \text { (JIS C 1602:2015, C thermocouple) }\end{array}$
Resistance temperature detector Pt100: JIS C 1604-2013

Table 2. Compact data storage (CDS) and health index settings

Item		Specifications	Note
Compact data storage (CDS)	Recording cycle	0: Same as sampling cycle 1: 0.1 s 2: 1 s 3: 10 s 4: 1 min 5: 10 min	Set according to the response time of the control target
	Operation type	0: Stop 1: DI1 status 2: DI2 status 11 to 26: Events 1 to 16 1024 to 2047: Standard bit codes	Operates when ON and records data.
Health Index	Operation type	0: Stop 1: DI1 status 2: DI2 status 11 to 26: Events 1 to 16 1024 to 2047: Standard bit codes	Operates for loops 1 to 4 individually
	R value scale	0 to 10	Result of primary operation \times power of 10
	Ideal data	0.0000 to 32000	
	Deviation low limit	0.0000 to 32000	No low limit when 0.0000
	Deviation high limit	0.0000 to 32000	No high limit when 0.0000
	SP high limit	-32000 to +32000	
File	Saved to	MicroSD memory card	
	Saving timing	Every 8 KB	
	Saved format	Text (CSV)	Extension: .DAT
	Number of files saved	65000 max.	
Records (for Data selection = Stan- dard)	Context section	P (Proportional band)	Setting at CDS start
		I (Integral time)	
		D (Derivative time)	
		OL	
		OH	
		SP limit	
		Definite R value	Definite value at CDS end
	Chronological data selection (cyclic recording)	Timestamp	
		SP	
		PV	
		MV	
		R value	
		RMS current value	CT input*
		RMS voltage value	VT input*
		Actuator (heater) resistance	Calculates using the CT input current and the VT input voltage)
Records (for Data selection = Custom)	Number of data items	1 to 40	
	Data type (Data 1 to 40)	1024 to 2047: Standard bit codes 2048 to 3071: Standard numerical codes Table 3, "Standard bit codes" (p. 10), Table 4, "Standard numerical codes" (p. 11).	The number of items set in "Number of data items" is enabled.
	Recording	Data is recorded periodically according to the settings for "Data type" and "Number of data items."	
Diagnostic parameter	Health index	Definite R value	In the normalization responsiveness (Kp/Tp) transfer function, gain is defined as Kp and the time constant as Tp.
	Calculation timing	When the health index function is running	Calculated from the data when the PV is rising during batch processing.

[^0]V-P block: CT1 RMS current, CT2 RMS current

Table 3. Standard bit codes
The range of standard bit codes is 1024 to 2027.
Codes not listed below are reserved for the system, so do not use them for configuration.

Standard bit code	Meaning of the standard bit codes	Standard bit code	Meaning of the standard bit codes
1024	Always 0 (Off)	1169	DI/DO2 terminal status
1025	Always 1 (On)	1170	DI/DO3 terminal status
1088	Event 1	1171	DI/DO4 terminal status
1089	Event 2	1172	DI/DO5 terminal status
1090	Event 3	1173	DI/D06 terminal status
1091	Event 4	1174	DI/DO7 terminal status
1092	Event 5	1280	V-P terminal status (block A2)
1093	Event 6	1281	V-P terminal status (block B2)
1094	Event 7	1282	V-P terminal status (block A1)
1095	Event 8	1283	V-P terminal status (block B1)
1096	Event 9	1408	User-defined bit 1
1097	Event 10	1409	User-defined bit 2
1098	Event 11	1410	User-defined bit 3
1099	Event 12	1411	User-defined bit 4
1100	Event 13	1412	User-defined bit 5
1101	Event 14	1413	User-defined bit 6
1102	Event 15	1414	User-defined bit 7
1103	Event 16	1415	User-defined bit 8
1120	CT1 heater burnout detection	1416	User-defined bit 9
	(block A2)	1417	User-defined bit 10
1121	CT2 heater burnout detection	1418	User-defined bit 11
	(block A2)	1419	User-defined bit 12
1122	CT1 heater burnout detection	1420	User-defined bit 13
	(block B2)	1421	User-defined bit 14
1123	CT2 heater burnout detection	1422	User-defined bit 15
	(block B2)	1423	User-defined bit 16
1124	CT1 heater burnout detection	1440	Result of logical operation 1
	(block A1)	1441	Result of logical operation 2
1125	CT2 heater burnout detection	1442	Result of logical operation 3
	(block A1)	1443	Result of logical operation 4
1126	CT1 heater burnout detection (block B1)	1444	Result of logical operation 5
		1445	Result of logical operation 6
1127	CT2 heater burnout detection (block B1)	1446	Result of logical operation 7
1128		1447	Result of logical operation 8
	CT1 overcurrent detection (block A2)	1448	Result of logical operation 9
1129		1449	Result of logical operation 10
	A2)	1450	Result of logical operation 11
1130	CT1 overcurrent detection (block	1451	Result of logical operation 12
		1452	Result of logical operation 13
1131		1453	Result of logical operation 14
		1454	Result of logical operation 15
1132	CT1 overcurrent detection (block	1455	Result of logical operation 16
		1504	At CDS start
1133	CT2 overcurrent detection (block	1505	Loop 1 health index running
		1506	Loop 2 health index running
1134	CT1 overcurrent detection (block	1507	Loop 3 health index running
		1508	Loop 4 health index running
1135	CT2 overcurrent detection (block	1517	Display unit connection status
1136		1518	Additional display unit connection status
	A2)	1568	Loop 1 RUN/READY status
1137	CT2 short-circuit detection (block	1569	Loop 2 RUN/READY status
	A2)	1570	Loop 3 RUN/READY status
1138	CT1 short-circuit detection (block	1571	Loop 4 RUN/READY status
		1584	Loop 1 Auto/manual status
1139		1585	Loop 2 Auto/manual status
		1586	Loop 3 Auto/Manual status
1140	CT1 short-circuit detection (block	1587	Loop 4 Auto/Manual status
		1600	Loop 1 AT stop/start status
1141		1601	Loop 2 AT stop/start status
		1602	Loop 3 AT stop/start status
1142	CT1 short-circuit detection (block	1603	Loop 4 AT stop/start status
		1616	Loop 1 LSP/RSP status
1143	CT2 short-circuit detection (blockB1)	1617	Loop 2 LSP/RSP status
		1648	Loop 1 SP ramp-up in progress
1168	DI/DO1 terminal status	1649	Loop 2 SP ramp-up in progress

Standard bit code	Meaning of the standard bit codes
1650	Loop 3 SP ramp-up in progress
1651	Loop 4 SP ramp-up in progress
1652	Loop 1 SP ramp-down in progress
1653	Loop 2 SP ramp-down in progress
1654	Loop 3 SP ramp-down in progress
1655	Loop 4 SP ramp-down in progress
1792	All typical alarms (logical OR of all alarms be displayed)
1824	Loop 1 PV low limit error
1825	Loop 1 PV high limit error
1826	Loop 1 RSP low limit error
1827	Loop 1 RSP high limit error
1828	Loop 2 PV low limit error
1829	Loop 2 PV high limit error
1830	Loop 2 RSP low limit error
1831	Loop 2 RSP high limit error
1832	Loop 3 PV low limit error
1833	Loop 3 PV high limit error
1836	Loop 4 PV low limit error
1837	Loop 4 PV high limit error
1880	MFB input error
1884	Adjusting MFB
1888	Estimating MFB
1896	MFB adjustment error
1900	Motor drive output OPEN
1904	Motor rdive output CLOSE
1920	Reception monitoring 1
1921	Reception monitoring 2
1922	Reception monitoring 3
1952	CT/VT input error (block A2 CT)
1953	CT/VT input error (block A2 VT)
1954	CT/VT input error (block B2 CT)
1955	CT/VT input error (block B2 VT)
1956	CT/VT input error (block A1 CT)
1957	CT/VT input error (block A1 VT)
1958	CT/VT input error (block B1 CT)
1959	CT/VT input error (block B1 VT)
1960	CT/CT input error (block A2 CT1)
1961	CT/CT input error (block A2 CT2)
1962	CT/CT input error (block B2 CT1)
1963	CT/CT input error (block B2 CT2)
1964	CT/CT input error (block A1 CT1)
2008	Block alarm SUB1 block failure
(DI DO)	
1965	Block alarm MAIN block failure
1966	CT/CT input error (block A1 CT2)
1967	CT/CT input error (block B1 CT1)
1973	Memory error (block B1 CT2)
1977	Battery error (CLOCK block)
1991	Block error
1992	SD card error
2000	Block alarm IO failure (block A1)
2001	Block alarm IO failure (block A2)
2002	Block alarm IO failure (block A3)
2003	Block alarm IO failure (block A4)
2004	Block alarm IO failure (block B1)
2006	Block alarm IO failure (block B2)
Block alarm IO failure (block B3)	
	Block alarm I failure (block B4)

Table 4. Standard numerical codes

The range of the standard numerical codes is 2048 to 2790 .
Codes not listed below are reserved for the system, so do not use them for configuration.

Standard numerical codes	Meaning of the standard numerical codes	Standard numerical codes	Meaning of the standard numerical codes
2048	Always 0.0	2499	CT2 measured current when
2111	User-defined value 1		output ON (block B2)
2112	User-defined value 2	2500	CT1 measured current when
2113	User-defined value 3		output ON (block A1)
2114	User-defined value 4	2501	CT2 measured current when
2115	User-defined value 5		ON (block A1)
2116	User-defined value 6	2502	CT1 measured current when output ON (block B1)
2117	User-defined value 7		
2118	User-defined value 8	2503	CT2 measured current when output ON (block B1)
2119	User-defined value 9	2512	CT1 measured current when
2120	User-defined value 10		output OFF (block A2)
2121	User-defined value 11	2513	CT2 measured current when
2122	User-defined value 12		(A2)
2123	User-defined value 13	2514	CT1 measured current when
2124	User-defined value 14		output OFF (block B2)
2125	User-defined value 15	2515	CT2 measured current when
2126	User-defined value 16		output OFF (block B2)
2304	Al (block A4)	2516	CT1 measured current when
2305	Al (block B4)		output OFF (block A1)
2306	Al (block A3)	2517	CT2 measured current when
2307	Al (block B3)		
2312	PV (block A4)	2518	CT1 measured current when
2313	PV (block B4)		
2314	PV (block A3)	2519	CT2 measured current when output OFF (block B1)
2315	PV (block B3)	2528	Loop 1 deviation (PV - SP)
2320	Loop 1 PV	2529	Loop 2 deviation (PV - SP)
2321	Loop 2 PV	2530	Loop 3 deviation (PV - SP)
2322	Loop 3 PV	2531	Loop 4 deviation (PV - SP)
2323	Loop 4 PV	2544	CT input value (block A2)
2336	Loop 1 SP (in use)	2545	CT input value (block B2)
2337	Loop 2 SP (in use)	2546	CT input value (block A1)
2338	Loop 3 SP (in use)	2547	CT input value (block B1)
2339	Loop 4 SP (in use)	2548	VT input value (block A2)
2352	Loop 1 SP (final value)	2549	VT input value (block B2)
2353	Loop 2 SP (final value)	2550	VT input value (block A1)
2354	Loop 3 SP (final value)	2551	VT input value (block B1)
2355	Loop 4 SP (final value)	2552	Resistance (block A2)
2416	Loop 1 MV	2553	Resistance (block B2)
2417	Loop 2 MV	2554	Resistance (block A1)
2418	Loop 3 MV	2555	Resistance (block B1)
2419	Loop 4 MV	2656	Event 1 timer remaining time
2432	Loop 1 MV for heating	2657	Event 2 timer remaining time
2433	Loop 2 MV for heating	2658	Event 3 timer remaining time
2434	Loop 3 MV for heating	2659	Event 4 timer remaining time
2435	Loop 4 MV for heating	2660	Event 5 timer remaining time
2448	Loop 1 MV for cooling	2661	Event 6 timer remaining time
2449	Loop 2 MV for cooling	2662	Event 7 timer remaining time
2450	Loop 3 MV for cooling	2663	Event 8 timer remaining time
2451	Loop 4 MV for cooling	2664	Event 9 timer remaining time
2464	MFB opening amount (estimated)	2665	Event 10 timer remaining time
2472	MFB opening amount (actual	2666	Event 11 timer remaining time
	value)	2667	Event 12 timer remaining time
2479	MFB count value	2668	Event 13 timer remaining time
2496	CT1 measured current when output ON (block A2)	2669	Event 14 timer remaining time
2497	CT2 measured current when	2670	Event 15 timer remaining time
	output ON (block A2)	2671	Event 16 timer remaining time
2498	CT1 measured current when output ON (block B2)	2736	CT1 Time proportioning current (block A2)
		2737	CT2 Time proportioning current (block A2)

Standard numeri- cal codes	Meaning of the standard numerical codes
2738	CT1 Time proportioning current (block B2)
2739	CT2 Time proportioning current (block B2)
2740	CT1 Time proportioning current (block A1)
2741	CT2 Time proportioning current (block A1)
2742	CT1 Time proportioning current (block B1)
2743	CT2 Time proportioning current (block B1)
2752	Loop 1 definite R value
2753	Loop 2 definite R value
2754	Loop 3 definite R value
2755	Loop 4 definite R value
2760	Loop 1 R value
2761	Loop 2 R value
2762	Loop 3 R value
2763	Loop 4 R value
2768	AO-C percent output value (block A2)
2769	AO-C percent output value (block B2)
2770	AO-C percent output value (block A1)
2771	AO-C percent output value (block B1)
2776	V-P percent output value (block A2)
2777	V-P percent output value (block B2)
2778	V-P percent output value (block A1)
2779	V-P percent output value (block B1)
2787	TP percent output value (DO4)
2788	TP percent output value (DO5)
2789	TP percent output value (DO6)
2790	TP percent output value (DO7)

*1. A rear-mounting bracket and a dedicated cable for connecting the display unit are included with the product.
*2. RSP1 can be switched for use as PV3.
*3. RSP2 can be switched for use as PV4.
*4. Current transformer (CT) and voltage transformer (VT) are not included.
*5. Additional display unit is not included.

Symbol	Block Name	Description
AI	Analog Input	Full-multi range (thermocouple, RTD, DC current, DC voltage) input $\times 1$
V-P	Voltage pulse output	Voltage pulse output (12 V DC) $\times 1$ Two input terminals for the current transformer (CT) for detecting heater burnout, overcurrent, and short circuit are included. ${ }^{* 4}$
AO-C	Analog current output	Current output (4-20 mA DC $/ 0-20 \mathrm{~mA} \mathrm{DC}) \times 1$ Input terminals for the current transformer (CT) for measuring current and the voltage transformer (VT) for measuring voltage are included (1 each).
HMI2	Additional display unit	Connector for the second display unit *5
Clock	Clock function	Clock (available for CDS and health index) with a battery

- Model No. recommendations

Current output													
Digits 8 \& 9	If 1 output: C0		\Rightarrow	If 2 outputs: CC		\Rightarrow	If 3 outputs: FC			\Rightarrow	If 4 outputs: FF		
	(A) (B)			(A) (B)			(A) (B)			A B AOC AO-C AO-C AO-C			
		$\begin{aligned} & 1 \\ & <1 \\ & 2 \end{aligned}$			-1		AO-C	$\begin{gathered} 1 \\ 0 . c \\ <2 \end{gathered}$					
	AO-C				AO-C 2								
Analog input													
Digits 6 \& 7	If 1 input: 10		\Rightarrow	If 2 inputs: 11		\Rightarrow	If 3 inputs: 21			\Rightarrow	If 4 inputs: $\mathbf{2 2}$		
	(A) (B)		(A) (B)				(A) (B)				(A) B		
		(3)					AI		(3)		AI	AI	3
	AI	4		AI	AI 4		AI	AI	4		AI	AI	4

- Sample block implementations for model No. and slot positions
Digits 6-9 \& slot positions

Example for C7GA411CCODOO
(A) (B)

Model selection (models with motor output)

Model selection (display unit)

Accessories (sold separately)

Name	Model No.
SLP-C7 Smart Loader Package (free version) *	SLP-C7FJ91
SLP-C7 Smart Loader Package (paid version)	SLP-C7-J91
Current transformer (5.8 mm in diameter)	QN206A
Current transformer (12 mm in diameter)	QN212A
Voltage transformer (for 200 V AC)	$\mathbf{8 1 4 0 6 7 2 5 - 0 0 3}$

Model No. and loop type

The following table shows the possible combinations of model No. and loop type with regard to analog input.
OK : Combination is possible

- : Combination is not possible

For possible combinations, slots for AI blocks and loop PVs or RSPs assigned to the blocks are shown.

PV1	$:$ LOOP1 PV
PV2	: LOOP2 PV
PV3	$:$ LOOP3 PV
PV4	: LOOP4 PV
RSP1	: LOOP1 RSP
RSP2	: LOOP2 RSP

Not used : The AI block slot exists but is not assigned to the PV or RSP of a loop.

Loop type	6th and 7th digits of the model No. (C7GA				
	10	20	11	21	22
0: 1 loop	A4: PV1	\quad OK A4: PV1 A3: Not used	OK A4: PV1 B4: Not used	OK A4: PV1 A3: Not used B4: Not used	OK A4: PV1 A3: Not used B4: Not used B3: Not used
$\text { 1: } 1 \text { loop + } 1 \text { RSP }$	-	OK A4: PV1 A3: RSP1	-	OK A4: PV1 A3: RSP1 B4: Not used	OK A4: PV1 A3: RSP1 B4: Not used B3: Not used
2: 2 loops	-	-	A4: PV1 B4: PV2	OK A4: PV1 A3: Not used B4: PV2	OK A4: PV1 A3: Not used B4: PV2 B3: Not used
$\text { 3: } 2 \text { loops + } 1 \text { RSP }$	-	-	-	OK A4: PV1 A3: RSP1 B4: PV2	OK A4: PV1 A3: RSP1 B4: PV2 B3: Not used
4: 2 loops + 2 RSPs	-	-	-	-	A4: PV1 A3: RSP1 B4: PV2 B3: RSP2
5: 3 loops	-	-	-	OK A4: PV1 A3: PV3 B4: PV2	OK A4: PV1 A3: PV3 B4: PV2 B3: Not used
$\text { 6: } 3 \text { loops + } 1 \text { RSP }$	-	-	-	-	OK A4: PV1 A3: PV3 B4: PV2 B3: RSP2

Loop type	6th and 7th digits of the model No. (C7GA _-_-				
	10	20	11	21	22
7: 4 loops	-	-	-	-	A4: PV1 A3: PV3 B4: PV2 B3: PV4
$\text { 8: } 1 \text { loop + } 1 \text { RSP }$	-	-	OK A4: PV1 B4: RSP1	-	-
9: Internal cascade	-	-	OK A4: PV1 (master) B4: PV2 (slave)	OK A4: PV1 (master) A3: None B4: PV2 (slave)	OK A4: PV1 (master) A3: None B4: PV2 (slave) B3: None
10: Internal cascade +1 loop	-	-	-	OK A4: PV1 (master) A3: PV3 B4: PV2 (slave)	OK A4: PV1 (master) A3: PV3 B4: PV2 (slave) B3: None
11: Internal cascade +2 loops	-	-	-	-	OK A4: PV1 (master) A3: PV3 B4: PV2 (slave) B3: PV4

! Handling Precautions

- The value of unused AI blocks is not displayed. To display a PV value for monitoring even if there is no need to control it, select a loop type that has the AI block assigned to a PV. Ex.: if model No. digits 6-7 are "11," select a $2: 2$ loop, not a 0:1 loop. In such a case, since the PV is actually not controlled, it is not necessary to set the analog current output block or DI/DO block to output MV.

External Dimensions and Mounting

- Standard mounting
(Unit: mm)

- Integrated mounting
(Unit: mm)

Part Names and Functions

- Display unit

- Integrated mounting bracket (included with integrated mounting models)

- Main unit

Terminal Connections

RS-485

Current output

Voltage pulse output

Motor drive output

I/O isolation

*1. Blocks are functionally isolated from one another.
*2. The power block (AC) and the motor block (relay output) have reinforced insulation for isolation from all other circuits.

Wiring Precautions

Before touching the main unit or display unit, or removing/ inserting cables, touch a grounded panel to discharge static electricity from your body.

- Power input

AC power
1: AC power supply live line
2: AC power neutral line
3: Frame ground
DC power
DC power +
DC power -
3: Frame ground

! Handling Precautions

- Before touching the power input terminal box, shut off the input power.
- After completing the work, be sure to mount the cover on the power input terminal block.
Note: Applicable crimp terminal for power input: Crimp terminal for M4 (8.5 mm or less wide). Proper tightening torque: $1.4 \mathrm{~N} \cdot \mathrm{~m}$

- DI/DO (digital inputs and outputs)

- : NC (not connected)

N1-7 : DI/DO 1-7 (DI and DO can be switched by changing the setting.)
V- : COM (common terminal)

- RS-485 (RS-485 communication port)

C1: ——DA (Data+)
C2: \quad C3: Terminating resistor
C4: ——DB (Data-)
C5: - SG
$!$ Handling Precautions

- Connect a terminating resistor ($120 \Omega, 1 / 2 \mathrm{~W}$) to both ends of the communication line.
- To connect two terminals (e.g., SG + another) together, use a crimp terminal for two wires.

- Al block (analog input)

Current input Voltage input Thermocouple input RTD input

Allowable input voltage
Current input: -1.5 to +1.5 V
Voltage input: -15 to +15 V
Thermocouple input: -1.5 to +1.5 V

- AO-C block (current outputs with CT and VT inputs)

1 : CT input
2 : CT/VT common
3 : VT input
4 : Current output +
5 : Current output -
Maximum allowable input
CT: 90 mA and 130 mA peak (AC) 1 V and 1.4 V peak (AC)
VT: 18 V and 26 V peak (AC)
Transient overvoltage
CT: supply voltage +250 V

1. Handling Precautions

- If a current transformer is used for a UL-compliant model, the transformer must be compliant with UL 2808 (categories XOBA and XOBA7). Do not use an uncertified current transformer.
- V-P block (voltage pulse outputs and 2 CT inputs)
1 : CT1
2 : Common
3 : CT2
4 : Voltage pulse output +
5 : Voltage pulse output -
Maximum allowable input
CT: 90 mA and 130 mA peak (AC)
1 V and 1.4 V peak (AC)
Transient overvoltage
CT: supply voltage +250 V
Load current:
Voltage pulse output: 25 mA max.
- MOTOR block (motor drive relay output: with MFB inputs)
\(\left.\begin{array}{ll}1 \& : OPEN

2 \& : Common

3 \& : CLOSE

4 \& : MFB (Y)

5 \& : MFB (T)

6 \& : MFB (G)\end{array}\right]\)| Contact voltage: |
| :--- |
| 250 V AC / 125 V DC max. |
| $(100$ to $2500 \Omega)$ |

- Recommended ferrules

Manufacturer : Phoenix Contact
Crimp tool : CRIMPFOX 6
DI/DO, RS-485, AI, AO-C, V-P

Designation	Order Nos.	Cross section $\left(\mathrm{mm}^{2}\right)$	Note
AI 0,25-8 YE	3203037	0.25 (AWG24)	With insulation sleeve
AI 0,34-8-TQ	3203066	0.34 (AWG22)	With insulation sleeve
AI 0,5-8 WH	3200014	0.50 (AWG20)	With insulation sleeve
AI 0,75-8 GY	3200519	0.75 (AWG18)	With insulation sleeve
A1-8	3202517	1.00 (AWG18)	Without insulation sleeve Used to crimp two JKPEV-S-2Px0.5SQ together.
A1,5-7	3200263	1.50 (AWG16)	Without insulation sleeve Used to crimp two JKPEV-S-2Px0.75SQ together.
AI-TWIN 2X0, 5-8 WH	3200933	0.50 (AWG20)	With insulation sleeve, twin
AI-TWIN 2X0, 75-8 GY	3200807	0.75 (AWG18)	With insulation sleeve, twin

MOTOR

Designation	Order Nos.	Cross section $\left(\mathrm{mm}^{2}\right)$	Note
AI0,75-8 BU	3200027	0.75 (AWG18)	With insulation sleeve
AI1-8 RD	3200030	1.00 (AWG18)	With insulation sleeve
AI1,5-8 RD	3201136	1.50 (AWG16)	With insulation sleeve
AI2,5-10 BU	3202533	2.00 $(A W G 14)$	With insulation sleeve

HMI (display unit)

Designation	Order Nos.	Cross section $\left(\mathrm{mm}^{2}\right)$	Note
AI0.25-6 YE	3203024	0.25 (AWG24)	For display connector, without insulation sleeve

- USB connection

Connect the device to the PC using a USB-to-MicroUSB (type A or B) cable.

! Handling Precautions

- Connection and disconnection of the MicroUSB is hazardous because there is a power terminal nearby. Be sure to turn off the power before connecting or disconnecting the cable.
Note: Use a data communication cable.
- Inserting or removing a microSD memory card

Insert the microSD memory card all the way inside. Pushing on the memory card lightly will release it, enabling you to remove the card.

! Handling Precautions

- Do not insert or remove a memory card while the indicator near the connector is flashing.
- Connection and disconnection of a microSD memory card is hazardous because there is a power terminal nearby. Be sure to turn off the power before connecting or disconnecting the card.

- Connecting the LAN cable for Ethernet

Use a Cat5E or higher LAN cable to make the connection.

- Connecting the main unit to the display unit using a cable

- For standard mounting

Use a Cat5E or higher straight LAN cable to make the connection. (Cat5E, T568A, or T568B wiring. Both ends use RJ45 plug (8P8C modular).)
*1. A 4-core LAN cable cannot be used.
*2. If the length of the cable between the main unit and the display unit is from 30 m to 100 m , an external power source must be connected for the display unit.

- Wiring for integrated mounting

Insert the rod-shape crimp terminal lug of the wires with the specified colors of the included cable into the terminal block of the display unit..
1: White/orange
4: White/green
2: Blue
5: Green
3: White/blue
6: Brown

Operation Check

After connecting the main unit to the display unit and turning on the power, a display will appear.
The display that first appears on the screen after power-on is called the initial display.
Display change button : Switches the display.
HOME button : Returns to the initial display.
MENU/Key lock button:
Displays the menu. Pressing the button for four seconds or longer locks the keys. Disabling the key lock is then the only operation permitted. Pressing the button again for four seconds or longer disables the key lock.

Troubleshooting

- Model number and serial number

The model number and serial number are printed on the top of the main unit near the front of the unit.
Have these numbers ready before contacting us.

■ Problems in installation

First, check the following regarding wiring:

- Connectors are securely inserted into the ports.
- Connectors are inserted into the right ports.
- Wires are properly connected to the power supply terminal block.
- Power is not turned on

Status	Countermeasures
The status indicator on the main unit is off.	Check the the power input connections and voltage.
The status indicator on the main unit is lit green or the power indicator on the display unit is off.	Standard mounting: Check the LAN cable (8-core straight). Check the connectors. Integrated mounting: Check if the wiring on the back of the display unit is correct. Check connec- tors on the main unit.
The power indicator on the display unit is lit green and the LCD remains black.	There may be a problem with the device. Please contact us.
The status indicator on the main unit is lit red.	There may be a problem with the device. Please contact us.

- Blurry display

A thin film is applied on the protection sheet of the display for protection during transportation. Please remove the protective film.

- Alarms (the status indicator is blinking red) Please refer to the user's manual.
- microSD is trademark or registered trademark of SD-3C, LLC in the United States, other countries or both
- Modbus is a trademark and the property of Schneider Electric SE, its subsidiaries and affiliated companies.

Please read "Terms and Conditions" from the following URL before ordering and use
http://www.azbil.com/products/factory/order.html

Azbil Corporation

Advanced Automation Company

1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan
URL: http://www.azbil.com/

[^0]: * The recorded details vary depending on the type of output block to which the MV is assigned.

 AO-C block: RMS current, RMS voltage, actuator resistance

