

2/2-Way Solenoid Control Valve

- Made for custom engineered applications
- Orifice sizes DN 0.8 ... 2.0 mm
- Port connection 1/8", sub-base or custom engineered armature

Type 2861 is an extremely compact solenoid control valve and is available with an orifice up to 2mm. It is based on the standard version of Type 2871 (see datasheet). It is used as an actuator in closed control loops (pressure, flow, temperature, etc.). Compared with the standard version, the valve is essentially of simpler construction and assembly and testing procedures are optimized, easing high volume series production with shorter delivery times. Please follow the instructions for a customised design on page 5 of this datasheet.

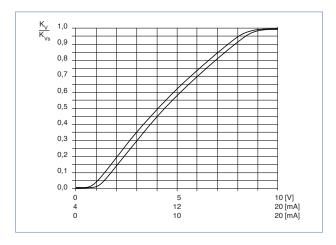
Circuit function A

direct acting 2-way solenoid control valve, normally closed

Valve control takes place through a PWM signal ¹⁾. The duty cycle of the PWM signal determines the coil current and hence the position of the plunger.

The Bürkert control electronics Type 8605 (see relevant datasheet) converts an analog signal to a reference value corresponding to the valve type PWM signal and provides additional functions such as temperature compensation (coil heating), ramp function and the adjustment of min. and max. duty cycle/coil current for the control range.

Please note the sizing comments for such a control valve on page 2.


Technical Data - Valve				
Body material	Brass, stainless steel			
Seal material	FKM, EPDM on request			
Medium	Neutral gases, liquids on request			
Pressure range	012 bar ²⁾			
Medium temperature	-10 +90 °C			
Ambient temperature	max. +55 °C			
Power supply	24 V DC			
Max. current	220mA (at 24V-hold)			
Power consumption	5 W			
Duty cycle	100% continuously rated			
PWM control frequency	800 Hz			
Port connection	Sub-base, G 1/8, NPT 1/8, others on request			
Electrical connection	Cable plug Type 2507, Form A industrial standard Item no. 423 845			
Installation	As required, preferably with actuator in upright position			
Typical control data 3)				
Hysteresis	< 5%			
Repeatability	< 1.0 % of F.S.			
Sensitivity	< 1.0 % of F.S.			
Span	1:25			
Protection class - valve	IP65			

¹⁾ PWM pulse-width modulation

 $^{^{\}mbox{\tiny 2)}}$ Pressure values [bar]: Measured as overpressure to the

atmospheric pressure, orifice further depends on nominal pressure ³⁾ Characteristic data of control behaviour depends on process conditions

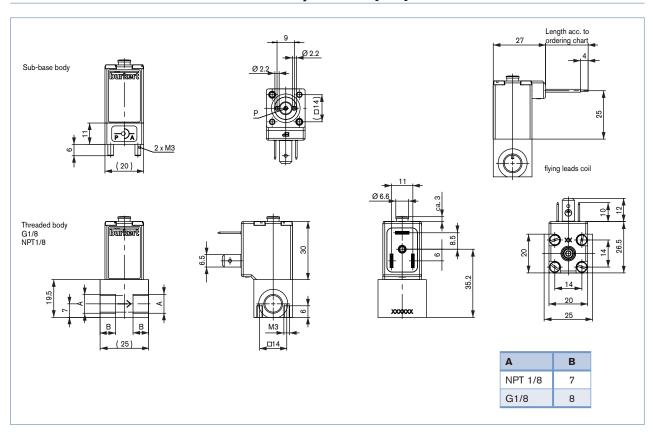
Characteristics of a proportional valve

Advice for valve sizing

In continuous flow applications, the choice of appropriate valve size is much more important than with on/off valves. The optimum size should be selected such that the resulting flow in the system is not unnecessarily reduced by the valve. However, a sufficient part of the pressure drop should be taken across the valve even when it is fully opened.

Recommended value: Δp_{valve} > 25 % of total pressure drop within the system

Otherwise, the ideal, linear valve curve characteristic is changed.


For that reason take advantage of Bürkert competent engineering services during the planning phase!

Determination of the k, value

Pressure drop	k _v value for liquids [m³/h]	k _v value for gases [m³/h]		
Subcritical $p_2 > \frac{p_1}{2}$	$= Q \sqrt{\frac{\rho}{1000 \Delta p}}$	$=\frac{Q_{N}}{514}\sqrt{\frac{T_{1}\rho_{N}}{p_{2}p}}$		
Supercritical $p_2 < \frac{p_1}{2}$	$Q\sqrt{\frac{\rho}{1000 \Delta p}}$	$=\frac{Q_{\scriptscriptstyle N}}{257p_{\scriptscriptstyle 1}}\sqrt{T_{\scriptscriptstyle 1}\rho_{\scriptscriptstyle N}}$		

- $\begin{array}{llll} \text{K}_{\text{V}} & \text{Flow coefficient} & & \text{[m³/h]}^{-4} \\ \text{O}_{\text{N}} & \text{Standard flow rate} & & \text{[m$_{\text{N}}$^3/h]}^{-5} \\ \text{p}_{_{1}} & \text{Inlet pressure} & & \text{[bar]}^{6} \\ \text{p}_{_{2}} & \text{Outlet pressure} & & \text{[bar]}^{6} \\ \Delta \text{p} & \text{Differential pressure} \, \text{p}_{_{1}}\text{-p}_{_{2}} \, \text{[bar]} \end{array}$
- $\begin{array}{lll} \rho & \text{Density} & [kg/m^3] \\ \rho_N & \text{Standard density} & [kg/m^3] \\ T_1 & \text{Medium temperature} & [(273+t)K] \end{array}$
- ⁴⁾ measured for water, Δp = 1 bar, via the device
- 5) Standard conditions at 1.013 bar³⁾ and 0 °C (273K)
- 6) Absolute pressure

Dimensions for sub-base and threaded body versions [mm]

Ordering chart

Circuit	Orifice [mm]	Port connection $^\eta$	k,s value water [m³/h] ®	Q _{nn} value [l/min] ⁸⁾	Nominal pressure ¹⁰⁾ [bar]	Item no. brass	Item no. stainless steel
А	0.8	Flansch FK01	0.018	19	12	255 637	275 076
2 (A)		G 1/8	0.018	19	12	255 638	275 070
▲ ▲ ⊥	1.0	Flansch FK01	0.027	29	10	275 073	275 077
1 (P)		G 1/8	0.027	29	10	249 896	265 373
,	1.2	Flansch FK01	0.038	41	8	275 074	275 078
		G 1/8	0.038	41	8	255 640	267 087
	1.6	Flansch FK01	0.055	59	6	249 009	275 079
		G 1/8	0.055	59	6	249 897	275 071
	2.0	Flansch FK01	0.090	97	3	275 075	275 080
		G 1/8	0.090	97	3	275 069	275 072

⁷⁾ Port Connections: NPT on request.

Please use page 4 of this datasheet to inquire about your individual requirements.

Further versions on request

Material

Other seal materials

Valve body with special armature

Oxygen version Parts oil-, fat- and silicon free

Coil Other coil power Specific, power setting for lower pressure Other operating voltages coil with flying leads

Valve armature
Special valve orifice

 $^{^{8)}}$ $\mathbf{k}_{_{VS}}$ value: Flow rate value for water, measured at +20 °C and 1 bar pressure differential over a fully opened valve.

⁹⁾ Q_{Nn} value: Flow rate for air with inlet pressure of 6 bar, 1 bar pressure differential and +20 °C.

¹⁰⁾ **Pressure data [bar]:** Overpressure with respect to atmospheric pressure.

Note

Design data for custom engineered solenoid control valves

Please fill out this form and send to your local Bürkert Sales Centre* with your inquiry or order

esign data for custom engineered so	You can fill out the fields directly the PDF file in the PDF file			
lease fill out this form and send to your loo	in the PDF life before printing out the form.			
Company	Contact person	Out		
Customer No	Department			
Address	Tel./Fax			
Postcode/Town	E-mail			

= Mandatory fields			Quantity	Requested delivery date
Process data				
Medium				
State of medium		liquid	gaseous	
Medium temperature			°C	
Maximum flow rate	Q _{nom} =		Unit:	
Minimum flow rate	Q _{min} =		Unit:	
Inlet pressure at nominal operation	p ₁ =		barg	
Outlet pressure at nominal operation	p ₂ =		barg	
Max. inlet pressure (nominal pressure)	p _{1max} =		barg	
Ambient temperature			°C	
Additional specifications				
Body material		Brass	Stainless steel	other
Seal material		FKM	other	

Note Please state all pressure values as overpressures with respect to atmospheric [barg].

To find your nearest Bürkert facility, click on the orange \rightarrow

www.burkert.com

In case of special application conditions, please consult for advice.

Subject to alteration. © Christian Bürkert GmbH & Co. KG

1607/2_EU-en_00895217