DC2-Wire Unshielded Gylindrical Proximity Switches

FL7M Series \quad Unshielded switches achieve especially long sensing distances

Long sensing distance
(2 times the sensing distance of a regular FL7M)
■DC2-wire no-polarity function reduces wiring costs
Stable sensing area is shown by the setting indicator
Firefly glow indicator lamp can be seen from any direction
Sealed to IP67G

ORDER GUIDE

-Preleaded types

Exterior		Sensing distance (mm)	Operation mode	Setting indicator	Oil-resistant cable	Catalog listing
Appearance	Size (O.D.)					
Preleaded type (2 m cable)	M8	4 mm	N.O.	\bigcirc	\bigcirc	FL7M-4J6ND
		,	N.C.		-	FL7M-4K6N
	M12	8 mm	N.O.	-	-	FL7M-8J6ND
	M12	\%	N.C.		\bigcirc	FL7M-8K6N
	M18	14 mm	N.O.	-	-	FL7M-14J6ND
	M	- 4	N.C.		-	FL7M-14K6N
	M30	20 mm	N.O.	-	-	FL7M-20J6ND
			N.C.		-	FL7M-20K6N

-Preleaded connector types

Exterior		Sensing distance (mm)	Operation mode	Setting indicator	Oil-resistant cable	Catalog listing
Appearance	Size (O.D.)					
Preleaded connector type (30 cm cable)	M8	4 mm	N.O.	-	-	FL7M-4J6ND-CN03
	M12	8 mm	N.O.	-	-	FL7M-8J6ND-CN03
	M18	14 mm	N.O.	\bigcirc	\bigcirc	FL7M-14J6ND-CN03
	M30	20 mm	N.O.	-	-	FL7M-20J6ND-CN03

- Accessories (sold separately)

Name	Appearance	O.D.	Catalog listing
Mounting bracket		For M12	FL-PA112
		For M18	FL-PA118
		For M30	FL-PA130

SPECIFICATIONS

Catalog listing			$\begin{gathered} \text { FL7M-4 } \square 6 N \square \\ (-C N 03) \end{gathered}$	$\begin{gathered} \text { FL7M-8 } \square 6 N \square \\ (-C N 03) \end{gathered}$	$\begin{gathered} \text { FL7M-14 } \square 6 \mathrm{~N} \square \\ \text { (-CN03) } \end{gathered}$	$\begin{gathered} \text { FL7M-20 } \square 6 N \square \\ (-C N 03) \end{gathered}$
Actuation method			High-frequency oscillation (unshielded)			
Rated sensing distance			$4 \pm 0.4 \mathrm{~mm}$	$8 \pm 0.8 \mathrm{~mm}$	$14 \pm 1.4 \mathrm{~mm}$	$20 \pm 2 \mathrm{~mm}$
Usable sensing distance			0 to 2.8 mm	0 to 5.6 mm	0 to 9.8 mm	0 to 14 mm
Standard target object			$20 \times 20 \times 1 \mathrm{~mm}$ iron	$30 \times 30 \times 1 \mathrm{~mm}$ iron	$30 \times 30 \times 1 \mathrm{~mm}$ iron	$54 \times 54 \times 1 \mathrm{~mm}$ iron
Differential travel			15% max. of sensing distance	10\% max. of sensing distance		
Rated supply voltage			12/24 Vdc			
Operating voltage range			10 to 30 Vdc			
Leakage current			0.8 mA max.			
Control output	Switching current		3 to 100 mA			
	Voltage drop		3V max. (at 100 mA switching current with 2 m cable)			
	Output	delectric strength	30 Vdc			
Operating frequency			1 kHz	800 Hz	400 Hz	100 Hz
Temperature drift (\% of sensing distance, taking $+25^{\circ}$ as standard temp.)			$\pm 15 \%$ max., in the -25 to $+70^{\circ}$ range taking $+25^{\circ} \mathrm{C}$ as the standard temp.	-10 to $+15 \%$ max., in the -25 to $+70^{\circ}$ range taking $+25^{\circ} \mathrm{C}$ as the standard temp.		$\pm 10 \%$ max., in the -10 to $+60^{\circ}$ range taking $+25^{\circ} \mathrm{C}$ as the standard temp.
Supply voltage drift			$\pm 1 \%$ max. of sensing distance with $\pm 15 \%$ voltage fluctuation, taking rated supply voltage as standard voltage			
Indicator lamps			N.O. type: Operation indication: lights up (red or green) upon output Setting indication: lights up (green) in stable sensing area N.C. type: Operation indication: red light goes out in sensing area			
Operating temperature			-25 to $+70^{\circ}$			-10 to $+60^{\circ}$
Insulation resistance			$50 \mathrm{M} \Omega \mathrm{min}$. (by 500 V megger)			
Dielectric strength			$1000 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$ for 1 minute			
Vibration resistance			10 to $55 \mathrm{~Hz}, 1.5 \mathrm{~mm}$ peak-to peak amplitude, 2 hrs each in X, Y and Z directions			
Shock resistance			$980 \mathrm{~m} / \mathrm{s}^{2} 10$ times each in X, Y and Z directions			
Protective structure			IP67 (IEC standard), IP67G (JEM standard)			
Weight	Preleaded type (main unit + standard 2 m cable)		Approx. 45 g	Approx. 55 g	Approx. 130 g	Approx. 180 g
	Preleaded connector type (main unit + 30 cm cable)		Approx. 30 g	Approx. 40 g	Approx. 70 g	Approx. 110 g
Circuit protection			Surge absorption, load short-circuit protection, reverse connection protection circuit			
Wiring method			Preleaded (standard 2 m cable), Preleaded connector (30 cm cable)			
Material	Switch	Case	SUS	Ni-plated brass		
		Sensing face	PBT			
	Connector	Housing	-CN03: polyester elastomer			
		Holder	PBT			
		Contact	-CN03: gold-plated brass			

USING THE SETTING INDICATOR

The proximity switch can be set up to detect objects reliably by bringing the switch progressively closer to the target object and installing the switch at the point where the indicator lamp (N.O. indication) changes from red to green.

SENSING AREA (typical)

Note: When the target object is made of a different material (such as aluminum, copper or stainless steel) from the standard target object (iron), the distance at which the indicator lamp changes color is shorter than the 80% maximum.

SENSING DISTANCE ACCORDING TO MATERIAL AND SIZE OF OBJECT (typical)

FL7M -4 \square 6N \square

FL7M -20 $\square \mathbf{6 N} \square$

VOLTAGE DROP (typical)

FL7M -8 $\square 6 \mathrm{~N} \square$

FL7M -14 $\square 6$ N \square

FL7M-4 $\square 6 N \square$

Vinyl-insulated cable (oil-resistant: $0.3 \mathrm{~mm}^{2}, 60 / 0.08$ dia., 2 -core), dia. 4 . Cap color: blue.

FL7M-14 $\square 6 \mathrm{~N} \square$

Vinyl-insulated cable (oil-resistant: $0.5 \mathrm{~mm}^{2}, 45 / 0.12$ dia., 2-core), dia. 6 Cap color: blue.

FL7M-8 $\square 6 N \square$

Vinyl-insulated cable (oil-resistant: $0.3 \mathrm{~mm}^{2}, 60 / 0.08$ dia., 2-core), dia. 4. Cap color: blue.

FL7M-20 $\square 6 \mathrm{~N} \square$

Vinyl-insulated cable (oil-resistant: $0.5 \mathrm{~mm}^{2}, 45 / 0.12$ dia., 2-core), dia. 6 . Cap color: blue.

Preleaded connector type

FL7M-4J6ND-CN03

Vinyl-insulated cable (oil-resistant: $0.3 \mathrm{~mm}^{2}, 60 / 0.08$ dia., 2-core), dia. 4 Cap color: blue.

FL7M-14J6ND-CN03

Vinyl-insulated cable (oil-resistant: $0.5 \mathrm{~mm}^{2}, 45 / 0.12$ dia., 2 -core), dia. 6 . Cap color: blue.

FL7M-8J6ND-CN03

Vinyl-insulated cable (oil-resistant: $0.3 \mathrm{~mm}^{2}, 60 / 0.08$ dia., 2 -core), dia. 4 . Cap color: blue.

FL7M-20J6ND-CN03

Vinyl-insulated cable (oil-resistant: $0.5 \mathrm{~mm}^{2}, 45 / 0.12$ dia., 2-core), dia. 6 . Cap color: blue.

Mounting brackets are made of polyacetal resin.
Two screws and two washers are provided for each bracket.

FL-PA118 and FL-PA130 screw holes are oblong.

Catalog listing	Dimensions (mm)							Screw size	
	A	B	C	D	E	F	G	Dia.	Neck
FL-PA112	25	12	20	12dia.	36	6	9.5	M4	25
FL-PA118	$30 / 32$	15	30	18dia.	45	7.5	14.5	M5	35
FL-PA130	$40 / 45$	15	50	30dia.	60	10	24.5	M5	55

Allowable tightening torque of bracket screws

Catalog listing	Max. torque (N•m)
FL-PA112	0.98
FL-PA118	1.5
FL-PA130	1.5

WIRING DIAGRAMS

Preleaded type

Preleaded connector type (N.O.)

-The load may be connected to either pole.

- A load must be used when power is supplied to the switch. Although there is short-circuit protection, a combination of a short circuit and wrong wiring can permanently damage the switch.
-The LED operates normally during a load
 short circuit, so check the wiring if the output is wrong.
- Fasten connectors tightly by hand.

CONNECTOR SPECIFICATIONS* ${ }^{*}$

Item	Specifications
Insulation resistance	Max. 100 M (by 500 Vdc megger)
Dielectric strength	1,500 Vac for 1 minute (between contacts, and between contact and connector housing)
Initial contact resistance	$\text { Max. } 40 \mathrm{~m} \Omega$ (with 3A current to connected male and female connectors. Semiconductor lead-specific resistance not included.)
Mating/unmating force	0.4 to 4.0 N per contact
Mating cycles	50
Connector nut tightening torque	Min. $0.8 \mathrm{~N} \cdot \mathrm{~m}$ *2
Cable pullout strength	Min. 100 N
Vibration resistance	10 to 55 Hz , 1.5 mm peak-to-peak amplitude, for 2 hours each in X, Y and Z directions
Impact resistance	$300 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in X, Y and Z directions
Protective structure	IP67
Ambient operating temperature	-10 to $+70^{\circ} \mathrm{C}$
Ambient storage temperature	-20 to $+80^{\circ} \mathrm{C}$
Ambient operating humidity	Max. 95\% RH
Material	Contacts: Gold-plated brass Contact holder: Glass-lined polyester resin Housing: Polyester elastomer Coupling: Ni-plated brass O-ring: NBR

*1: Specifications assume Azbil male/female connectors.
*2: The recommended torque is 0.4 to $0.6 \mathrm{~N}-\mathrm{m}$. If fastened poorly, the IP67 protection is lost, or looseness occurs. Fasten the connector securely by hand

CONNECTOR WITH CABLE

Be sure to use a PA5 Series connector with cable when connecting a preleaded connector or connector-type switch.

- PA5 Series connector with cable

Shape	Power supply	Cord properties	Cord length	Catalog listing	Lead colors
	DC	Vinyl-insulated cord with high resistance to oil and vibration (UL/NFPA79 CM, CL3)	2 m	PA5-4I SX2SK	1: brown, 2: white, 3: blue, 4: black
			5 m	PA5-4I SX5SK	1: brown, 2: white, 3: blue, 4: black
			2 m	PA5-4I LX2SK	1: brown, 2: white, 3: blue, 4: black
			5 m	PA5-4I LX5SK	1: brown, 2: white, 3: blue, 4: black

1. Mounting

The allowable tightening torque varies according to the distance from the sensing face.

Catalog listing	Length A (mm)	Max. tightening torque (N•m)	
		\mathbf{A}	\mathbf{B}
FL7M-4 $\square \mathbf{6 N} \square$	3	9	7.8
FL7M-8 $\square \mathbf{6 N} \square$	0	-	19.6
FL7M-14 $\square \mathbf{6 N} \square$	0	-	70
FL7M-20 $\square \mathbf{6 N} \square$	0	-	180

Note: The table shows the allowable tighteningtorque when toothed washers (provided) are used.

The allowable tightening torque varies depending on the materials and surface conditions of the mounting plates, mounting housings, nuts, washers and other parts used for the switch.
Check that the torque is appropriate for the actual combination of parts used before putting the switch into operation.

2. Influence of surrounding metal

Metal other than the target object surrounding the switch may influence operating characteristics. Leave space between the switch and surrounding metal as shown below.

Shaded areas indicate surrounding metal other than the target object.
A: Distance from sensing face of proximity switch to mounting surface
B: Distance from surface of iron plate to sensing face of proximity switch.
C: Distance from surface of iron plate to center of proximity switch when $A=0$

Catalog listing	A(mm)	B(mm)	C(mm)
FL7M-4 \square 6N \square	12	8	12
FL7M-8 \square 6N \square	15	20	20
FL7M-14 \square 6N \square	22	40	35
FL7M-20 \square 6N \square	30	70	45

3. Mutual interference prevention

When mounting proximity switches either parallel to or facing each other, mutual interference may cause the switch to malfunction. Maintain at least the distances indicated in the figures below.

Catalog listing	A(mm)	B(mm)
FL7M-4 $\square \mathbf{6 N} \square$	60	80
FL7M-8 \square 6N \square	100	120
FL7M-14 $\square \mathbf{6 N} \square$	110	200
FL7M-20 $\square \mathbf{6 N} \square$	200	300

4. Cautions for series or parallel connection

4.1 Series connection (AND switching circuit)

When connecting two or more proximity switches in series, erroneous output (1 to 3 ms) may occur without the rated current being supplied to each of the switches. For this reason,series connection of proximity switches is not recommended. However, if proximity switches must be connected in series, a resistor of $10 \mathrm{k} \Omega$ must be put in parallel to each of the switches. Note that the maximum leakage current in a series connection will be 3.5 mA . Operation lag alsowill occur, resulting in increased voltage drop, and the operation indicator lamp will not light.

4.2 Parallel connection (OR switching circuit)

- If two or more proximity switches are connected in parallel, total leakage current increases according to the following formula, and may result in the load not turning OFF.
(Leakage current = Leakage current of single switch \times No. of switches in parallel)
- When two or more switches in parallel turn ON, one (or more) of their operating indicators may not light up. This is normal.

5. Relay loads

The voltage drop of these FL7M switches is 3V. Pay attention to this voltage drop when using a relay load. (With 12 Vdc relays, switching is not possible.)

6. Operation upon power ON

After the power is turned ON, it takes at most 40 ms until the proximity switch is ready for sensing. If the load and the proximity switch use different power supplies, be sure to turn the proximity switch ON before turning the load ON.

7. Influence of leakage current

A minimal current flows as leakage current for operating the circuits even when the proximity switch is OFF. Keep this in mind when turning off connected loads.

8. Minimum cable bend radius (R)

The minimum bend radius (R) of the cable is 3 times the cable diameter. Take care not to bend the cable beyond this radius. Also, do not excessively bend the cable within 30 mm of the cable lead-in port.

