Orifice Plates Model NOP

Introduction

Orifice plates are widely used for flow measurement as they provide the simplest and the most economical means of flow detection. Orifice plates are available in the concentric type that the round opening (bore) of the orifice plate is positioned concentrically with the center of the pipe; and the opening edge (bore edge) is available either in the regular edge type (sharp, square edge type) or in the quardrant edge type (round edge type). Orifice plates are available also in the eccentric type that the opening of the orifice is shifted from the center of the pipe. They also are available in the segmental type that the opening is a circular segment and the orifice is comparable to a partically opened gate valve.

Standard Specification

Types of orifice bores:

Regular-edge concentric type, quardrant-edge concentric type, eccentric type, and segmental type

Flow calculation standards:

Regular-edge concentric orifies; JIS Z 8762-1988*8 (ISO 5167-1980)
(Contraction (vena) tap and 2.5D-8D (pipe) tap are as) per "ASME Fluid Meters, Their Theory and Application, 5th Edition, 1959."
Quardrant-edge orifices; Shell Flow Meter Engineering Handbook 1968
Eccentric orifices; ASME Fluid Meters, Their Theory and Segmental orifices; $\}$ Application, 5th Edition, 1959

Flange ratings:

JIS $2,5,10,16,20,30,40,63 \mathrm{kgf} / \mathrm{cm}^{2} \mathrm{RF}$
ANSI (or JPI) 150, 300, $600,900 \mathrm{lb}$ RF (*1)
(Note: Flange dimensions are identical between ANSI and JPI)
Plate material: SUS304, SUS316 (*2)
Plate thickness: $2,3,5,8,10 \mathrm{~mm}$
(Select an appropriate thickness for the size and tempera-
ture range, referring to the table of dimensoins.)
Surface finish processing: As per JIS Z 8762 (1988)

Notes:

(*1) Orifices plates for RTJ flanges are available. Refer to the Specification Sheet (No. SS2-5680-0500) for Holder Ring Assembly (Model: NOH).
(*2) Even when the plate is made of SUS316, the handle (the orifice identification tab) is made of SUS304.
(*3) Orifice plates for pipes of $40 \mathrm{~mm}\left(1^{1} / 2^{\prime \prime}\right)$ diameter and of 760 mm and over of radius taps are available although they are not covered in the standard specification range.
(*4) In the case of Vena-Contracta taps or 1D-1/2D (radius) taps, it is possible that the downstream-side pressure tap is positioned just on the flange location or on the welding position of the pipes. In such a case, the type of tapping method must be changed.
(*5) For the orifice plates for 25 mm (1") diameter pipes, refer to Spec:fication Sheet (No. SS2-5680-0600) for Smaller-bore Orifice Assembly (Model: NOS).
(*6) The limit of radius ratio (β) is checked using a nomograph. Please request it if such is required. In any case the ratio should be within a range of $\beta=0.3$ to 0.7 .
(*7) The drain hole or vent hole is provided when the orifice bore is 25.4 mm or over. If no such hole is required, please specify so when ordering.
(*8) Flow calculation standards are as per JIS Z 8762-1988. However, post standard JIS Z 8762-1969 can also be used. In this case, specify the post standard.

Types and ranges of orifice plates

Type of orifice	Tapping system	Nominal pipe diameter	β : Limit of diameter ratio (D2/D1) ${ }^{(* 6)}$	Remarks
Regular-edge concentric type	Flange taps Corner taps $1 \mathrm{D}-1 / 2 \mathrm{D}$ (radium) taps Vena-Contracta taps 2.5D-8D (pipe) taps	$\begin{aligned} & \left({ }^{(* 3)}\right. \\ & 40 \mathrm{~mm}\left(1^{1} / 2^{\prime \prime}\right) \text { to } 350 \mathrm{~mm}\left(14^{\prime \prime}\right) \\ & \left({ }^{(* 3)}\right. \\ & 40 \mathrm{~mm}\left(1^{1} / 2^{\prime \prime}\right) \text { to } 400 \mathrm{~mm}\left(16^{\prime \prime}\right) \\ & \\ & \left({ }^{(* 4)}\right. \\ & 150 \mathrm{~mm}\left(6^{\prime \prime}\right) \text { to } 1500 \mathrm{~mm}\left(60^{\prime \prime}\right) \\ & (* 3, * 4) \\ & 150 \mathrm{~mm}\left(6^{\prime \prime}\right) \text { to } 1500 \mathrm{~mm}\left(60^{\prime \prime}\right) \\ & 50 \mathrm{~mm}\left(2^{\prime \prime}\right) \text { to } 400 \mathrm{~mm}\left(16^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & \beta=0.20 \text { to } 0.75 \\ & \beta=0.20 \text { to } 0.80 \\ & \beta=0.20 \text { to } 0.75 \\ & \beta=0.10 \text { to } 0.80 \\ & D 1 \leqq 80 \mathrm{~mm}\left(3^{\prime \prime}\right) \quad \beta=0.10 \text { to } 0.70 \\ & \text { D1 } \geqq 100 \mathrm{~mm}\left(4^{\prime \prime}\right) \quad \beta=0.10 \text { to } 0.75 \end{aligned}$	- High accuracy in high range of Reynods numbers. - Suitable for flow measurement of large pipes. - Economical than other types as compared for the same nominal diameter.
Quadrant-edge concentric type	Flange taps Corner taps	$40 \mathrm{~mm}\left(1^{1 / 2} 2^{\prime \prime}\right)$ to 250 mm ($10^{(* 5)}$	$\beta=0.25$ to 0.60	- High accuracy in low range of Reynolds numbers (lower than approximately 20,000).
Eccentric type	Flange taps Bena-Contracta taps	100 mm (4") to 350 mm (14")	$\beta=0.30$ to 0.80	- Effective for measurement of flows containing sediments and suspension which cannot be processed through drain hole or vent hole.
Segment type	Fange taps Vena-Contracta taps	100 mm ($4^{\prime \prime}$) to 350 mm ($14^{\prime \prime}$)	$\beta=0.30$ to 0.80	- The basic purpose is the same as that of the eccentric orifice, but with higher functional performance at higher cost.

Model Number Table

Table of Dimensions

JIS 2K Flange						(Unit: mm)		
Nominal dia. (mm)	O.D. of orifice plate	Thickness				Tab handle		Type
		Plate (T)			$\begin{gathered} \text { Edge } \\ \mathrm{t} \\ \hline \end{gathered}$	Width W	$\begin{gathered} \text { Height } \\ \text { H } \end{gathered}$	
		$\leqq 200^{\circ} \mathrm{C}$	$\leqq 300^{\circ} \mathrm{C}$	$\leqq 400^{\circ} \mathrm{C}$				
450	532	5	8	10	5	30	120	B
500	582	5	8	10	8	30	120	
550	640	5	8	-	8	30	120	
600	690	5	8	-	8	50	120	
650	745	8	10	-	10	50	120	
700	795	8	10	-	10	50	120	
750	853	8	10	-	10	50	140	
800	903	8	10	-	10	50	140	
850	953	8	10	-	10	50	140	
900	1003	8	10	-	10	50	140	
1000	1103	10	10	-	10	50	140	
1100	1213	10	-	-	10	50	140	
1200	1323	10	-	-	10	50	140	
1350	1478	10	-	-	10	50	140	
1500	1633	10	-	-	10	50	140	

JIS 5K Flange						(Unit: mm)		
Nominal dia. (mm)	O.D. of orifice plate	Thickness				Tab handle		Type
		Plate (T)			$\begin{gathered} \text { Edge } \\ \mathrm{t} \\ \hline \end{gathered}$	Width W	$\begin{gathered} \text { Height } \\ H \end{gathered}$	
		$\leqq 200^{\circ} \mathrm{C}$	$\leq 300^{\circ} \mathrm{C}$	$\leq 400^{\circ} \mathrm{C}$				
40	83	2	3	3	0.5	25	110	A
50	93	2	3	3	0.5	25	110	
65	118	3	3	3	0.5	25	110	
80	129	3	3	3	1.0	25	110	
90	139	3	3	3	1.0	25	110	
100	149	3	3	3	1.0	25	110	
125	184	3	3	5	1.5	25	110	
150	214	3	5	5	1.5	25	110	
175	240	3	5	5	2.0	25	110	
200	260	3	5	5	2.0	25	110	
225	285	3	5	8	2.0	25	110	
250	325	3	5	8	2.0	25	110	
300	370	3	5	8	3.0	25	110	
350	413	5	8	10	3.0	25	110	
400	473	5	8	10	5.0	30	120	B
450	530	5	8	10	5.0	30	120	
500	580	5	8	10	8.0	30	120	
550	638	5	8	-	8.0	30	120	
600	688	5	8	-	8.0	50	120	
650	743	8	10	-	10.0	50	120	
700	793	8	10	-	10.0	50	120	
750	847	8	10	-	10.0	50	140	
800	897	8	10	-	10.0	50	140	
850	947	8	10	-	10.0	50	140	
900	997	8	10	-	10.0	50	140	
1000	1097	10	10	-	10.0	50	140	
1100	1207	10	-	-	10.0	50	140	
1200	1317	10	-	-	10.0	50	140	
1350	1472	10	-	-	10.0	50	140	
1500	1627	10	-	-	10.0	50	140	

JIS 16K, 20K Flange (Unit: mm)								
Nominal dia. (mm)	O.D. of orifice plate \times	Thickness				Tab handle		Type
		Plate (T)			$\begin{gathered} \text { Edge } \\ \mathrm{t} \\ \hline \end{gathered}$	Width w	HeightH	
		$\leqq 200^{\circ} \mathrm{C}$	$\leqq 300^{\circ} \mathrm{C}$	$\leqq 400^{\circ} \mathrm{C}$				
40	89	2	3	3	0.5	25	110	A
50	104	2	3	3	0.5	25	110	
65	124	3	3	3	0.5	25	110	
80	140	3	3	3	1.0	25	110	
90	150	3	3	3	1.0	25	110	
100	165	3	3	3	1.0	25	110	
125	203	3	3	5	1.5	25	110	
150	238	3	5	5	1.5	25	110	
200	283	3	5	5	2.0	25	110	
250	356	3	5	8	2.0	25	110	
300	406	3	5	8	3.0	25	110	
350	450	5	8	10	3.0	25	110	B
400	510	5	8	10	5.0	30	140	
450	572	5	8	10	5.0	30	140	
500	627	5	8	10	8.0	30	140	
550	681	5	8	-	8.0	30	140	
600	731	5	8	-	8.0	50	140	

JIS 30K Flange		(Unit: mm)						
Nominal dia. (mm)	O.D. of orifice plate \times	Thickness				Tab handle		Type
		Plate (T)			$\begin{gathered} \text { Edge } \\ \mathrm{t} \\ \hline \end{gathered}$	Width W	Height H	
		$\leqq 200^{\circ} \mathrm{C}$	$\leqq 300^{\circ} \mathrm{C}$	$\leq 400^{\circ} \mathrm{C}$				
40	100	2	3	3	0.5	25	110	A
50	114	2	3	3	0.5	25	110	
65	140	3	3	3	0.5	25	110	
80	150	3	3	3	1.0	25	110	
90	163	3	3	3	1.0	25	110	
100	173	3	3	5	1.0	25	110	
125	208	3	3	5	1.5	25	110	
150	251	3	5	5	1.5	25	110	
200	296	3	5	5	2.0	25	110	
250	360	3	5	8	2.0	25	110	
300	420	3	5	8	3.0	25	120	
350	465	5	8	10	3.0	25	120	B
400	524	5	8	10	5.0	30	140	

JIS 40K Flange									JIS 63K Flange							(Unit: mm)	
Nominal	O.D. of orifice plate \times	Thickness				Tab handle		Type	Nominal dia. (mm)	O.D. of orifice plate x	Thickness				Tab handle		Type
dia.		Plate (T)			$\begin{array}{\|c} \hline \text { Edge } \\ \mathrm{t} \\ \hline \end{array}$	Width W	Height H					Plate (T)		Edge	Width	Height	
(mm)		$\leqq 200^{\circ} \mathrm{C}$	$\leqq 300^{\circ} \mathrm{C}$	$\leqq 400^{\circ} \mathrm{C}$							$\leqq 200^{\circ} \mathrm{C}$	$\leqq 300^{\circ} \mathrm{C}$	$\leq 400^{\circ} \mathrm{C}$	t	w	H	
40	100	2	3	3	0.5	25	110	A	40	108	2	3	3	0.5	25	110	A
50	114	2	3	3	0.5	25	110		50	125	2	3	3	0.5	25	110	
65	140	3	3	3	0.5	25	110		65	153	3	3	3	0.5	25	110	
80	150	3	3	3	1.0	25	110		80	163	3	3	3	1.0	25	110	
90	163	3	3	3	1.0	25	110		90	181	3	3	3	1.0	25	110	
100	183	3	3	3	1.0	25	110		100	196	3	3	3	1.0	25	110	
125	226	3	3	5	1.5	25	110		125	235	3	3	5	1.5	25	110	
150	265	3	5	5	1.5	25	110		150	275	3	5	5	1.5	25	110	
200	315	3	5	5	2.0	25	120	B	200	330	3	5	5	2.0	25	120	B
250	380	3	5	8	2.0	25	120		250	394	3	5	8	2.0	25	120	
300	434	3	5	8	3.0	25	120		300	449	3	5	8	3.0	25	120	
350	479	5	8	10	3.0	25	120		350	488	5	8	10	3.0	25	120	
400	534	5	8	10	5.0	30	140		400	548	5	8	10	5.0	30	160	

ANSI (or JPI) 150 Flange						(Unit: mm)			ANSI (or JPI) 300 Flange						(Unit: mm)		
Nominal dia. (mm)	O.D. of orifice plate \times	Thickness				Tab handle		Type	Nominal dia. (mm)	O.D. of orifice plate x	Thickness				Tab handle		Type
		Plate (T)			$\begin{gathered} \text { Edge } \\ \mathrm{t} \\ \hline \end{gathered}$	$\begin{gathered} \text { Width } \\ \text { W } \\ \hline \end{gathered}$	Height H					Plate (T)		Edge	Width	Height	
		$\leqq 200^{\circ} \mathrm{C}$	$\leqq 300^{\circ} \mathrm{C}$	$\leqq 400^{\circ} \mathrm{C}$							$\leqq 200^{\circ} \mathrm{C}$	$\leqq 300^{\circ} \mathrm{C}$	$\leqq 400^{\circ} \mathrm{C}$	t	w	H	
11/2	86	2	3	3	0.5	25	110	A	11/2	95	2	3	3	0.5	25	110	A
2	105	2	3	3	0.5	25	110		2	111	2	3	3	0.5	25	110	
$21 / 2$	124	3	3	3	0.5	25	110		21/2	130	3	3	3	0.5	25	110	
3	137	3	3	3	1.0	25	110		3	149	3	3	3	1.0	25	110	
$31 / 2$	162	3	3	3	1.0	25	110		$31 / 2$	165	3	3	3	1.0	25	110	
4	175	3	3	3	1.0	25	110		4	181	3	3	3	1.0	25	110	
5	197	3	3	5	1.5	25	110		5	216	3	3	5	1.5	25	110	
6	222	3	5	5	1.5	25	110		6	251	3	5	5	1.5	25	110	
8	279	3	5	5	2.0	25	110		8	308	3	5	5	2.0	25	110	
10	340	3	5	8	2.0	25	110		10	362	3	5	8	2.0	25	110	
12	410	3	5	8	3.0	25	110		12	422	3	5	8	3.0	25	120	B
14	451	5	8	10	3.0	25	110	B	14	486	5	8	10	3.0	25	120	
16	514	5	8	10	5.0	30	120		16	540	5	8	10	5.0	30	140	
18	546	5	8	10	5.0	30	120		18	594	5	8	10	5.0	30	140	
20	603	5	8	10	8.0	30	140		20	651	5	8	10	8.0	30	140	
24	715	5	8	-	8.0	50	140		24	772	5	8	-	8.0	50	160	
26	723	8	10	-	10.0	50	140		26	768	8	10	-	10.0	50	160	
28	773	8	10	-	10.0	50	140		28	822	8	10	-	10.0	50	160	
30	824	8	10	-	10.0	50	140		30	883	8	10	-	10.0	50	160	
32	878	8	10	-	10.0	50	140		32	937	8	10	-	10.0	50	160	
34	932	8	10	-	10.0	50	140		34	991	8	10	-	10.0	50	160	
36	985	8	10	-	10.0	50	140		36	1044	8	10	-	10.0	50	160	
38	1035	8	10	-	10.0	50	140		38	1095	8	10	-	10.0	50	160	
40	1092	10	10	-	10.0	50	140		40	1146	10	10	-	10.0	50	160	
42	1143	10	-	-	10.0	50	140		42	1197	10	-	-	10.0	50	160	
44	1201	10	-	-	10.0	50	140		44	1247	10	-	-	10.0	50	160	
46	1252	10	-	-	10.0	50	140		46	1314	10	-	-	10.0	50	160	
48	1303	10	-	-	10.0	50	140		48	1365	10	-	-	10.0	50	160	
54	1460	10	-	-	10.0	50	140		54	1527	10	-	-	10.0	50	160	
60	1627	10	-	-	10.0	50	140		60	1704	10	-	-	10.0	50	160	

ANSI (or JPI) 600 Flange						(Unit: mm)		
Nominal dia. (mm)	O.D. of orifice plate \times	Thickness				Tab handle		Type
		Plate (T)			$\begin{gathered} \text { Edge } \\ \mathrm{t} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Width } \\ \mathrm{w} \\ \hline \end{array}$	Height\qquad H	
		$\leqq 200^{\circ} \mathrm{C}$	$\leqq 300^{\circ} \mathrm{C}$	$\leqq 400^{\circ} \mathrm{C}$				
11/2	95	2	3	3	0.5	25	110	A
2	111	2	3	3	0.5	25	110	
21/2	130	3	3	3	0.5	25	110	
3	149	3	3	3	1.0	25	110	
$31 / 2$	162	3	3	3	1.0	25	110	
4	194	3	3	3	1.0	25	110	
5	241	3	3	5	1.5	25	110	
6	267	3	5	5	1.5	25	110	
8	320	3	5	5	2.0	25	120	B
10	400	3	5	8	2.0	25	120	
12	457	3	5	8	3.0	25	120	
14	492	5	8	10	3.0	25	120	
16	565	5	8	10	5.0	30	140	
18	609	5	8	10	5.0	30	160	
20	679	5	8	10	8.0	30	160	
24	787	5	8	-	8.0	50	160	

ANSI (or JPI) 900 Flange						(Unit: mm)		
Nominal dia. (mm)	O.D. of orifice plate \times	Thickness				Tab handle		Type
		Plate (T)			Edge t	Width W	Height H	
		$\leqq 200^{\circ} \mathrm{C}$	$\leqq 300^{\circ} \mathrm{C}$	$\leqq 400^{\circ} \mathrm{C}$				
11/2	99	2	3	3	0.5	25	110	A
2	143	2	3	3	0.5	25	110	
$21 / 2$	165	3	3	3	0.5	25	110	
3	168	3	3	3	1.0	25	110	
4	206	3	3	3	1.0	25	110	
5	248	3	3	5	1.5	25	120	B
6	289	3	5	5	1.5	25	120	
8	359	3	5	5	2.0	25	120	
10	435	3	5	8	2.0	25	120	
12	499	3	5	8	3.0	25	120	
14	521	5	8	10	3.0	25	120	
16	575	5	8	10	5.0	30	160	
18	635	5	8	10	5.0	30	160	
20	696	5	8	10	8.0	30	160	
24	835	5	8	-	8.0	50	190	

When ordering an orifice plate, please specify the following for orifice calculations.

No.	Item			Calculation	Unit
1	Material of plate			--	--
2	Type of orifice bore			--	--
3	Tapping system			--	--
4	Type of fluid			--	--
$5{ }^{(* 1)}$	Maximum flow rate (instrument scale)			W	kg / h
				Q	$\mathrm{m}^{3} / \mathrm{h}$
					$\mathrm{Nm}^{3} / \mathrm{h}$
$\left.6{ }^{*} 2\right)$	Normal flow rate			$\mathrm{W}_{\text {A }}$	kg / h
					$\mathrm{m}^{3} / \mathrm{h}$
				,	$\mathrm{Nm}^{3} / \mathrm{h}$
$\begin{array}{r} \left({ }^{*} 3\right) \\ 7\left({ }^{*} 4\right) \end{array}$	Scale reference (Specify in the case of volumetric flow measurement)	Liquid	at $15^{\circ} \mathrm{C}$ or at $\square^{\circ} \mathrm{C}$	--	--
		Gas	at $0^{\circ} \mathrm{C}, 1 \mathrm{~atm} .$Reference for wet gas measurementor at $\square^{\circ} \mathrm{C}, \quad \square \mathrm{kg} / \mathrm{cm}^{2} \mathrm{G}$	--	--
8	Pipe diameter			D_{1}	mm
9	Maximum differential pressure			H	$\mathrm{mmH}_{2} \mathrm{O}$
10	Normal temperature			T ${ }_{1}$	${ }^{\circ} \mathrm{C}$
11	Specific weight				$\mathrm{kg} / \mathrm{cm}^{2} \mathrm{G}$
				${ }_{1}$	$\mathrm{mmH}_{2} \mathrm{O}$
$\left.12{ }^{*} 4\right)$	Specific weight	Liquid	When in scale reference state	R_{N}	$\mathrm{kg} / \mathrm{m}^{3}$
			When in operation state	R_{1}	$\mathrm{kg} / \mathrm{m}^{3}$
		Gas		MW	g/22.406 ¢
				R_{N}	$\mathrm{kg} / \mathrm{Nm}^{3}$
13	Normal viscosity			U	cp
$14^{(* 4)}$	Compressibility factor	For gas only	at $0^{\circ} \mathrm{C}, 1 \mathrm{~atm}$.	$Z_{N}\left({ }^{*} 5\right)$	--
			When in operation state	Z_{1}	-
$15{ }^{(4)} 4$	Relative humidity	For gas only	When in operating state or at $\square^{\rho} \mathrm{C}, \square \mathrm{kg} / \mathrm{cm}^{2} \mathrm{G}$	RH	\%
16	Specific heat ratio	Gas or steam	When in operation state	I_{z}	--
$17{ }^{*}{ }^{*}$)	Roughness of inside wall of pipe			K	mm

Notes:

(*1) The maximum flow rate of No. 5 means the maximum value of the instrument scale.
(*2) For the normal flow rate of No. 6, 80% of the maximum flow rate will be assumed unless specified otherwise by the customer.
(*3) If no specification is given by the customer for the scale reference of $\mathrm{No} .7,16{ }^{\circ} \mathrm{C}$ will be assumed for a liquid or the WET BASE will be used for a wet gas.
(*4) Refer to the following formulas for conversion of a volumetric flow of No. 7 into a weight flow, and for relationships among specific weight of No. 12, compressibility factor of No. 14, and relative humidity of No. 15.
1)

```
W}=\mp@subsup{Q}{N}{}\cdot\mp@subsup{R}{N}{
    W = O
\(W=Q_{1} \cdot R_{1}\)
2) Gas
\[
\begin{equation*}
\text { DRY BASE } \quad W=\frac{Q_{N}(D) \cdot R_{1}(W)}{\frac{\left(P_{1}+1.0332\right)-\phi \cdot P_{V}}{1.0332} \cdot \frac{273.15}{T_{1}+273.15} \cdot \frac{1}{Z_{R}}} \cdot \tag{3}
\end{equation*}
\]
\(R_{1}(W)=R_{N}(D) \cdot \frac{P_{1}+1.0332}{1.0332} \cdot \frac{273.15}{T_{1}+273.15} \cdot \frac{1}{Z_{R}}\left(1+\frac{\phi . P_{v}}{P_{1}+1.0332}\left(\frac{0.6225}{G(D)}-1\right)\right] \ldots(4)\)
WET BASE
\(W=Q_{N}(W) \cdot R_{N}(D) \ldots \ldots\)
\(R_{1}=(4)\)
total base
\(W=Q_{N}(T) \cdot R_{N}(W\)
\(R_{1}(W)=R_{N}(W) \cdot \frac{P_{1}+1.0332}{1.0332} \cdot \frac{273.15}{T_{1}+273.15} \cdot \frac{1}{Z_{R}}\)
\(G(D)=\frac{M W(D)}{28.97}\)
\(R_{N}(D)=\frac{1.2929 \cdot G(D)}{Z_{N}}\)
\(G(W)=\frac{M W(W)}{28.97}\)
\(R_{N}(W)=\frac{1.2929 \cdot G(W)}{Z_{N}}\)
\(Z_{R}=\frac{Z_{1}}{Z_{N}}\)

Where, W: Weight flow rate [kgf/hr]
\(\mathrm{Q}_{\mathrm{N}}\) : Volumetric flow rate when in reference state \(\left[\mathrm{m}^{3} / \mathrm{hr}\right.\) or \(\left.\mathrm{Nm}^{3} / \mathrm{hr}\right]\)
\(\mathrm{Q}_{1}\) : Volumetric flow rate when in operating state \(\left[\mathrm{m}^{3} / \mathrm{hr}\right.\) )
\(R_{N}\) : Specific weight when in reference state \(\left[\mathrm{kgf} / \mathrm{m}^{3}\right.\) or \(\mathrm{kgf} / \mathrm{Nm}^{3}\) )
\(R_{1}\) : Specific weight when in operating state \(\left[\mathrm{kgf} / \mathrm{m}^{3}\right]\)
\(P_{V}\) : Saturated steam pressure \(\quad\left[\mathrm{kgf} / \mathrm{cm}^{2} \mathrm{abs}\right]\)
\(\phi: \quad\) Relative humidity \(=\frac{\text { RH }}{100}\)
\(Z_{R}\) : Compressibility factor ratio
G: Specific gravity of gas with respect to air as 1.0 at \(0^{\circ} \mathrm{C}\) and 1 atm .
Letters D, W and T enclosed in the parentheses stand for DRY, WET, and TOTAL, respectively.
(*5) Unless specified otherwise by the customer, 1.0 will be assumed for the compressibility factor \(\left(Z_{N}\right)\) of No. 14.
(*6) Unless specified otherwise by the customer, \(0.05(\mathrm{~mm})\) will be assumed for the roughness of pipe inside surface of No. 17.
( 7) When no data are indicated by the customer properties and data are well known to Yamatake, such for orifice calculation.

\section*{Special Orifice Plates Available}

Special types of orifice plates also are available from Azbil Corporation as follows:
1) Regular-edge concentric-type orifice plates of nominal diameters 1500 mm ( 60 in .) to 3000 mm (120 in.) designed with respect to the flange bolt circle and bolt hole diameter. Appropriate orifice plate thickness selected taking the operating conditions into consideration.
2) Orifice plates of non-standard thickness or non-standard materials (such as SUS316L, hastelloy B, C, Monel, Titanium, PVC, etc.)
3) Orifice bore calculation under predetermined tap positions.
4) Reversible-direction orifice plates.
5) Integral orifice assembly with differential pressure transmitter for low flow rate measurement. (Refer to No. SS2-519-010.)
6) If you have any problems regarding orifice plates in particular or flow measurement in general, please consult your Azbil Corporation agent.

Please read the "Terms and Conditions" from the following URL before ordering or use:

Specifications are subject to change without notice.

\section*{Azbil Corporation}

\section*{Advanced Automation Company}

1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan
URL: http://www.azbil.com/```

